Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9

被引:328
作者
Freund, JB [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
D O I
10.1017/S0022112001004414
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The mechanisms of sound generation in a Mach 0.9, Reynolds number 3600 turbulent jet are investigated by direct numerical simulation. Details of the numerical method are briefly outlined and results are validated against an experiment at the same flow conditions (Stromberg, McLaughlin & Troutt 1980). Lighthill's theory is used to define a nominal acoustic source in the jet, and a numerical solution of Lighthill's equation is compared to the simulation to verify the computational procedures. The acoustic source is Fourier transformed in the axial coordinate and time and then filtered in order to identify and separate components capable of radiating to the far field. This procedure indicates that the peak radiating component of the source is coincident with neither the peak of the full unfiltered source nor that of the turbulent kinetic energy. The phase velocities of significant components range from approximately 5% to 50% of the ambient sound speed which calls into question the commonly made assumption that the noise sources convect at a single velocity. Space-time correlations demonstrate that the sources are not acoustically compact in the streamwise direction and that the portion of the source that radiates at angles greater than 45 degrees is stationary. Filtering non-radiating wavenumber components of the source at single frequencies reveals that a simple modulated wave forms for the source, as might be predicted by linear stability analysis. At small angles from the jet axis the noise from these modes is highly directional, better described by an exponential than a standard Doppler factor.
引用
收藏
页码:277 / 305
页数:29
相关论文
共 45 条
[1]   The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet [J].
Arndt, REA ;
Long, DF ;
Glauser, MN .
JOURNAL OF FLUID MECHANICS, 1997, 340 :1-33
[2]   Subsonic and supersonic jet noise predictions from statistical source models [J].
Bailly, C ;
Lafon, P ;
Candel, S .
AIAA JOURNAL, 1997, 35 (11) :1688-1696
[3]  
Bailly C., 1994, Acta Acustica, V2, P101
[4]   Computation of jet mixing noise due to coherent structures: The plane jet case [J].
Bastin, F ;
Lafon, P ;
Candel, S .
JOURNAL OF FLUID MECHANICS, 1997, 335 :261-304
[5]  
BOERSMA BJ, 1999, 991874 AIAA
[6]  
BOGEY C, 2000, 20002009 AIAA
[7]  
Choi D., 1999, 990230 AIAA
[8]   Sound generation in a mixing layer [J].
Colonius, T ;
Lele, SK ;
Moin, P .
JOURNAL OF FLUID MECHANICS, 1997, 330 :375-409
[9]  
COLONIUS T, 1993, AIAA J, V31, P1174
[10]  
CRIGHTON DG, 1990, J FLUID MECH, V220, P255