Framework for modelling data uncertainty in life cycle inventories

被引:205
作者
Huijbregts, MAJ
Norris, G
Bretz, R
Ciroth, A
Maurice, B
von Bahr, B
Weidema, B
de Beaufort, ASH
机构
[1] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1018 WV Amsterdam, Netherlands
[2] Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands
[3] Sylvatica, N Berwick, ME 03906 USA
[4] Ciba Specialty Chem Inc, CH-4002 Basel, Switzerland
[5] Tech Univ Berlin, Inst Tech Umweltschutz Abfallvermeidung & Sekunda, D-10623 Berlin, Germany
[6] Elect France, Energy Syst Branch, Div Res & Dev, F-77818 Ecully, Moret Sur Loing, France
[7] Chalmers Univ Technol, CPM, Ctr Environm Assessment Prod & Mat Syst, S-41296 Gothenburg, Sweden
[8] 2 0 LCA Consultants, Copenhagen, Denmark
[9] FEFCO G0 KI, NL-6071 ND Swalmen, Netherlands
关键词
data gaps; data inaccuracy; data uncertainty; unrepresentative data; general framework; life cycle inventory (LCI); Monte Carlo simulation; sensitivity analysis; SETAC LCA-WG; Data Availability and Data Quality; uncertainty assessment; uncertainty importance;
D O I
10.1007/BF02978728
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Modelling data uncertainty is not common practice in life cycle inventories (LCI), although different techniques are available for estimating and expressing uncertainties, and for propagating the uncertainties to the final model results. To clarify and stimulate the use of data uncertainty assessments in common LCI practice, the SETAC working group 'Data Availability and Quality' presents a framework for data uncertainty assessment in LCI Data uncertainty is divided in two categories: (1) lack of data, further specified as complete lack of data (data gaps) and a lack of representative data, and (2) data inaccuracy. Filling data gaps can be done by input-output modelling, using information for similar products or the main ingredients of a product, and applying the law of mass conservation. Lack of temporal, geographical and further technological correlation between the data used and needed may be accounted for by applying uncertainty factors to the non-representative data. Stochastic modelling, which can be performed by Monte Carlo simulation, is a promising technique to deal with data inaccuracy in LCIs.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 38 条
[1]  
[Anonymous], 1990, GUIDE DEALING UNCERT
[2]  
[Anonymous], SCHRIFTENREIHE UMWEL
[3]  
[Anonymous], 1996, OKOINVENTARE ENERGIE
[4]  
BECCALI G, 1997, P 2 INT C, V1
[5]  
BOUSTEAD I, 1993, 3 APME PMWI
[6]  
BOUSTEAD I, 1997, 9 APME ISOPA
[7]   PRINCIPLES OF GOOD PRACTICE FOR THE USE OF MONTE-CARLO TECHNIQUES IN HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENTS [J].
BURMASTER, DE ;
ANDERSON, PD .
RISK ANALYSIS, 1994, 14 (04) :477-481
[8]  
*CARN MELL U, 1999, EC INP OUTP LIF CYC
[9]  
Chevalier J.L., 1996, International Journal of Life Cycle Assessment, V1, P90
[10]  
DEBEAUFORT ASH, 2001, SETAC WG DATA AVAILA