Characterization of gradient control systems

被引:28
作者
Cortés, J
Van der Schaft, A
Crouch, PE
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Arizona State Univ, Dept Elect & Comp Engn, Tempe, AZ 85287 USA
关键词
gradient control systems; symmetric product; prolongation and gradient extension of a nonlinear system; externally equivalent systems;
D O I
10.1137/S0363012903425568
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a general nonlinear affine control system with outputs and a torsion-free a. ne connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system corresponding to some pseudo-Riemannian metric whose Levi-Civita connection is equal to the given a. ne connection. The results rely on a suitable notion of compatibility of the system with respect to the given a. ne connection, and on the output behavior of the prolonged system and the gradient extension. The symmetric product associated with an a. ne connection plays a key role throughout the discussion.
引用
收藏
页码:1192 / 1214
页数:23
相关论文
共 28 条
[1]  
BRAYTON RK, 1964, Q APPL MATH, V22, P81
[2]  
BRAYTON RK, 1964, Q APPL MATH, V12, P1
[3]  
BROCKETT RW, 1972, ORDINARY DIFFERENTIA, P379
[4]  
BULLO F, 2004, TEXT APPL MATH, V49
[5]  
CORTES J, 2003, P 2 IFAC WORKSH LAGR, P73
[6]  
Crouch P. E., 1987, LECT NOTES CONTROL I, V101
[7]   ON FINITE VOLTERRA SERIES WHICH ADMIT HAMILTONIAN REALIZATIONS [J].
CROUCH, PE ;
IRVING, M .
MATHEMATICAL SYSTEMS THEORY, 1984, 17 (04) :293-318
[8]   ADJOINT AND HAMILTONIAN INPUT-OUTPUT DIFFERENTIAL-EQUATIONS [J].
CROUCH, PE ;
LAMNABHILAGARRIGUE, F ;
VANDERSCHAFT, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (04) :603-615
[9]   GEOMETRIC STRUCTURES IN SYSTEMS-THEORY [J].
CROUCH, PE .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1981, 128 (05) :242-251
[10]  
doCarmo M. P., 1976, Differential geometry of curves and surfaces