Hamiltonian formalism for space-time noncommutative theories

被引:74
作者
Gomis, J [1 ]
Kamimura, K
Llosa, J
机构
[1] CERN, Div Theory, CH-1211 Geneva 23, Switzerland
[2] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[3] Inst Fis Altes Energies, E-08028 Barcelona, Spain
[4] Toho Univ, Dept Phys, Chiba 2748510, Japan
[5] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
关键词
D O I
10.1103/PhysRevD.63.045003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Space-time non-commutative theories are nonlocal in time. We develop the Hamiltonian formalism for non-local field theories in d space-time dimensions by considering auxiliary (d+1)-dimensional field theories which are local with respect to the evolution time. The Hamiltonian path integral quantization is considered and the Feynman rules in the Lagrangian formalism are derived. The case of non-commutative phi (3) theory is considered as an example.
引用
收藏
页数:6
相关论文
共 25 条
[1]  
Aharony O, 2000, J HIGH ENERGY PHYS
[2]   Stringy fuzziness as the custodian of time-space noncommutativity [J].
Barbón, JLF ;
Rabinovici, E .
PHYSICS LETTERS B, 2000, 486 (1-2) :202-211
[3]   EQUIVALENCE BETWEEN THE LAGRANGIAN AND HAMILTONIAN-FORMALISM FOR CONSTRAINED SYSTEMS [J].
BATLLE, C ;
GOMIS, J ;
PONS, JM ;
ROMANROY, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2953-2962
[4]   THE PROBLEM OF NONLOCALITY IN STRING THEORY [J].
ELIEZER, DA ;
WOODARD, RP .
NUCLEAR PHYSICS B, 1989, 325 (02) :389-469
[5]  
FADDEEV LD, 1969, THEOR MATH PHYS, V1, P1
[6]   An invariant Set of Variations for the Movement of several electrical Ground Particles [J].
Fokker, A. D. .
ZEITSCHRIFT FUR PHYSIK, 1929, 58 (5-6) :386-393
[7]   Space-time noncommutative field theories and unitarity [J].
Gomis, J ;
Mehen, T .
NUCLEAR PHYSICS B, 2000, 591 (1-2) :265-276
[8]  
GOMIS J, HEPTH0009158
[9]  
Gopakumar R, 2000, J HIGH ENERGY PHYS
[10]  
Gopakumar R, 2000, J HIGH ENERGY PHYS