Well-solvable special cases of the traveling salesman problem: A survey

被引:118
作者
Burkard, RE
Deineko, VG
Van Dal, R
Van der Veen, JAA
Woeginger, GJ
机构
[1] Graz Tech Univ, Inst Math, A-8010 Graz, Austria
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] Chalmers Tekn Hogskola, Inst Datavetenskap, S-41296 Gothenburg, Sweden
[4] Nijenrode Univ, Netherlands Sch Business, NL-3621 BG Breukelen, Netherlands
关键词
traveling salesman problem; combinatorial optimization; polynomial time algorithm; computational complexity;
D O I
10.1137/S0036144596297514
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The traveling salesman problem (TSP) belongs to the most basic, most important, and most investigated problems in combinatorial optimization. Although it is an NP-hard problem, many of its special cases can be solved efficiently in polynomial time. We survey these special cases with emphasis on the results that have been obtained during the decade 1985-1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler, and Shmoys [The Traveling Salesman Problem-A Guided Tour of Combinatorial Optimization, Wiley, Chichester, pp. 87-143].
引用
收藏
页码:496 / 546
页数:51
相关论文
共 132 条
[1]   GEOMETRIC APPLICATIONS OF A MATRIX-SEARCHING ALGORITHM [J].
AGGARWAL, A ;
KLAWE, MM ;
MORAN, S ;
SHOR, P ;
WILBER, R .
ALGORITHMICA, 1987, 2 (02) :195-208
[2]  
Aizenshtat V. S., 1968, Cybernetics, V4, P52, DOI 10.1007/BF01073739
[3]  
Aizenshtat V. S., 1968, DOKL AKAD NAUK BSSR, V12, P401
[4]  
AIZENSHTAT VS, 1979, CYBERNETICS, V14, P565
[5]  
AIZENSHTAT VS, 1975, 4 REP C BEL MATH MIN
[6]  
AIZENSHTAT VS, 1970, DOKL AKAD NAUK BSSR, V8, P685
[7]  
[Anonymous], LECT NOTES COMPUTER
[8]   SCHEDULING IN A SEMI-ORDERED FLOWSHOP WITHOUT INTERMEDIATE QUEUES [J].
ARORA, RK ;
RANA, SP .
AIIE TRANSACTIONS, 1980, 12 (03) :263-272
[9]  
BAKI F, 1995, 95021 U NEW BRUNSW F
[10]   SEQUENCING OF INSERTIONS IN PRINTED-CIRCUIT BOARD ASSEMBLY [J].
BALL, MO ;
MAGAZINE, MJ .
OPERATIONS RESEARCH, 1988, 36 (02) :192-201