Globally coupled maps with asynchronous updating

被引:18
作者
Abramson, G
Zanette, DH
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Ctr Atom Bariloche, Consejo Nacl Invest Cient & Tecn, RA-8400 Bariloche, Rio Negro, Argentina
[3] Inst Balseiro, RA-8400 Bariloche, Rio Negro, Argentina
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 04期
关键词
D O I
10.1103/PhysRevE.58.4454
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze a system of globally coupled logistic maps with asynchronous updating. We show that its dynamics differs considerably from that of the synchronous case. For growing values of the coupling intensity, an inverse bifurcation cascade replaces the structure of clusters and ordering in the phase diagram. We present numerical simulations and an analytical description based on an effective single-element dynamics affected by internal fluctuations. Both of them show how global coupling is able to suppress the complexity of the single-element evolution. We find that, in contrast to systems with synchronous update, internal fluctuations satisfy the law of large numbers. [S1063-651X(98)15110-3].
引用
收藏
页码:4454 / 4460
页数:7
相关论文
共 18 条
[1]   COLLECTIVE BEHAVIORS IN SPATIALLY EXTENDED SYSTEMS WITH LOCAL INTERACTIONS AND SYNCHRONOUS UPDATING [J].
CHATE, H ;
MANNEVILLE, P .
PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (01) :1-60
[2]   EMERGENCE OF EFFECTIVE LOW-DIMENSIONAL DYNAMICS IN THE MACROSCOPIC BEHAVIOR OF COUPLED MAP LATTICES [J].
CHATE, H ;
MANNEVILLE, P .
EUROPHYSICS LETTERS, 1992, 17 (04) :291-296
[3]   Collective behaviors in coupled map lattices with local and nonlocal connections [J].
Chate, Hugues ;
Manneville, Paul .
CHAOS, 1992, 2 (03) :307-313
[4]   ORDER AND TURBULENCE IN RF-DRIVEN JOSEPHSON-JUNCTION SERIES ARRAYS [J].
DOMINGUEZ, D ;
CERDEIRA, HA .
PHYSICAL REVIEW LETTERS, 1993, 71 (20) :3359-3362
[5]   COUPLED MAPS ON TREES [J].
GADE, PM ;
CERDEIRA, HA ;
RAMASWAMY, R .
PHYSICAL REVIEW E, 1995, 52 (03) :2478-2485
[6]  
Harvey I, 1997, P 4 EUR C ART LIF EC
[7]   SYNCHRONOUS CHAOS IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1994, 50 (03) :1874-1885
[8]  
Hertz J., 1991, Introduction to the Theory of Neural Computation
[10]   CLUSTERING, CODING, SWITCHING, HIERARCHICAL ORDERING, AND CONTROL IN A NETWORK OF CHAOTIC ELEMENTS [J].
KANEKO, K .
PHYSICA D, 1990, 41 (02) :137-172