The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach

被引:73
作者
Dehghani, H [1 ]
Brooksby, B
Vishwanath, K
Pogue, BW
Paulsen, KD
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
关键词
D O I
10.1088/0031-9155/48/16/310
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Near-infrared (NIR) tomography is a technique used to measure light propagation through tissue and generate images of internal optical property distributions from boundary measurements. Most popular applications have concentrated on female breast imaging, neonatal and adult head imaging, as well as muscle and small animal studies. In most instances a highly scattering medium with a homogeneous refractive index is assumed throughout the imaging domain. Using these assumptions, it is possible to simplify the model to the diffusion approximation. However, biological tissue contains regions of varying optical absorption and scatter, as well as varying refractive index. In this work, we introduce an internal boundary constraint in the finite element method approach to modelling light propagation through tissue that accounts for regions of different refractive indices. We have compared the results to data from a Monte Carlo simulation and show that for a simple two-layered slab model of varying refractive index, the phase of the measured reflectance data is significantly altered by the variation in internal refractive index, whereas the amplitude data are affected only slightly.
引用
收藏
页码:2713 / 2727
页数:15
相关论文
共 29 条
[1]   BOUNDARY-CONDITIONS FOR DIFFUSION OF LIGHT [J].
ARONSON, R .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (11) :2532-2539
[2]   A FINITE-ELEMENT APPROACH FOR MODELING PHOTON TRANSPORT IN TISSUE [J].
ARRIDGE, SR ;
SCHWEIGER, M ;
HIRAOKA, M ;
DELPY, DT .
MEDICAL PHYSICS, 1993, 20 (02) :299-309
[3]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[4]   The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions [J].
Arridge, SR ;
Dehghani, H ;
Schweiger, M ;
Okada, E .
MEDICAL PHYSICS, 2000, 27 (01) :252-264
[5]   Three-dimensional optical tomography of hemodynamics in the human head [J].
Bluestone, AY ;
Abdoulaev, G ;
Schmitz, CH ;
Barbour, RL ;
Hielscher, AH .
OPTICS EXPRESS, 2001, 9 (06) :272-286
[6]   Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status [J].
Chance, B .
ACADEMIC RADIOLOGY, 2001, 8 (03) :209-210
[7]   Three-dimensional optical tomography: resolution in small-object imaging [J].
Dehghani, H ;
Pogue, BW ;
Jiang, SD ;
Brooksby, B ;
Paulsen, KD .
APPLIED OPTICS, 2003, 42 (16) :3117-3128
[8]   Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results [J].
Dehghani, H ;
Pogue, BW ;
Poplack, SP ;
Paulsen, KD .
APPLIED OPTICS, 2003, 42 (01) :135-145
[9]   Quantification in tissue near-infrared spectroscopy [J].
Delpy, DT ;
Cope, M .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 352 (1354) :649-659
[10]   Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods [J].
Fantini, S ;
Walker, SA ;
Franceschini, MA ;
Kaschke, M ;
Schlag, PM ;
Moesta, KT .
APPLIED OPTICS, 1998, 37 (10) :1982-1989