Investigation of multiple roots of the resistive wall mode dispersion relation, including kinetic effects

被引:26
作者
Berkery, J. W. [1 ]
Betti, R. [2 ]
Sabbagh, S. A. [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
HIGH-BETA PLASMAS; TOKAMAKS; STABILIZATION; DISSIPATION; PHYSICS; NSTX;
D O I
10.1063/1.3604948
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The resistive wall mode instability in tokamak plasmas has a complex frequency which can be determined by a dispersion relation that is cubic, in general, leading to three distinct roots. A simplified model of the dispersion relation, including kinetic effects, is presented and used to explore the behavior of these roots. By changing the plasma rotation frequency, it is shown that one root has a slow mode rotation frequency (less than the inverse wall time) while the other two rotate more quickly, one leading and one lagging the plasma rotation frequency. When realistic experimental parameters from the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] are used, however, only one slow rotating, near-marginal stability root is found, consistent with present experiments and more detailed calculations with the MISK code [B. Hu et al., Phys. Plasmas 12, 057301 (2005)]. Electron collisionality acts to stabilize one of the rotating roots, while ion collisionality can stabilize the other. In devices with low rotation and low collisionality, these two rotating roots may manifest themselves, but they are likely to remain stable. (C) 2011 American Institute of Physics. [doi:10.1063/1.3604948]
引用
收藏
页数:8
相关论文
共 28 条
[1]   Effect of Collisionality on Kinetic Stability of the Resistive Wall Mode [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Betti, R. ;
Bell, R. E. ;
Gerhardt, S. P. ;
LeBlanc, B. P. ;
Yuh, H. .
PHYSICAL REVIEW LETTERS, 2011, 106 (07)
[2]   The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stabilitya) [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Reimerdes, H. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Podesta, M. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[3]   Resistive Wall Mode Instability at Intermediate Plasma Rotation [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Tritz, K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[4]   STABILITY ANALYSIS OF RESISTIVE WALL KINK MODES IN ROTATING PLASMAS [J].
BETTI, R ;
FREIDBERG, JP .
PHYSICAL REVIEW LETTERS, 1995, 74 (15) :2949-2952
[5]   Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks [J].
Bondeson, A ;
Chu, MS .
PHYSICS OF PLASMAS, 1996, 3 (08) :3013-3022
[6]   Resistive wall modes and error field amplification [J].
Boozer, AH .
PHYSICS OF PLASMAS, 2003, 10 (05) :1458-1467
[7]   Stability of the resistive wall mode in JET [J].
Chapman, I. T. ;
Gimblett, C. G. ;
Gryaznevich, M. P. ;
Hender, T. C. ;
Howell, D. F. ;
Liu, Y. Q. ;
Pinches, S. D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (05)
[8]   Stabilization of the external kink and the resistive wall mode [J].
Chu, M. S. ;
Okabayashi, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
[9]   A simple model of the resistive wall mode in tokamaks [J].
Fitzpatrick, R .
PHYSICS OF PLASMAS, 2002, 9 (08) :3459-3469
[10]   Stabilization of the resistive shell mode in tokamaks [J].
Fitzpatrick, R ;
Aydemir, AY .
NUCLEAR FUSION, 1996, 36 (01) :11-38