Activation of the insulin receptor's kinase domain changes the rate-determining step of substrate phosphorylation

被引:36
作者
Ablooglu, AJ [1 ]
Kohanski, RA [1 ]
机构
[1] Mt Sinai Sch Med, Dept Biochem & Mol Biol, New York, NY 10029 USA
关键词
D O I
10.1021/bi002292m
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The insulin receptor and many other protein kinases are activated by relief of intrasteric inhibition that is regulated by reversible phosphorylation. The changes accompanying activation of the insulin receptor's kinase domain were analyzed using steady-state kinetics, viscometric analysis, and equilibrium binding measurements. Peptide phosphorylation catalyzed by the unphosphorylated basal-state kinase is limited by a slow rate of the chemical step, and the activated enzyme is limited by product release rates. Underlying these changes were a 36-fold increase in the rate constant for the chemical step of the enzyme-catalyzed reaction, a 5-fold increase in the affinity for MgATP, and an 8-fold increase in the affinity for peptide substrate. This results in binding of substrates that is 2.2 kcal/mol more favorable and a free energy barrier for transition state formation that is lowered by 2.1 kcal/mol in the activated enzyme. Therefore, the change in conformational free energy inherent in the protein after autophosphorylation [Bishop, S. M., Ross, J. B. A., and Kohanski, R. A. (1999) Biochemistry 38, 3079-3089] is equally distributed between formation of the substrate ternary complex and formation of the transition state complex.
引用
收藏
页码:504 / 513
页数:10
相关论文
共 58 条
[1]   Probing the catalytic mechanism of the insulin receptor kinase with a tetrafluorotyrosine-containing peptide substrate [J].
Ablooglu, AJ ;
Till, JH ;
Kim, K ;
Parang, K ;
Cole, PA ;
Hubbard, SR ;
Kohanski, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (39) :30394-30398
[2]   PHOSPHORYLATION MODULATES CATALYTIC FUNCTION AND REGULATION IN THE CAMP-DEPENDENT PROTEIN-KINASE [J].
ADAMS, JA ;
MCGLONE, ML ;
GIBSON, R ;
TAYLOR, SS .
BIOCHEMISTRY, 1995, 34 (08) :2447-2454
[3]   ENERGETIC LIMITS OF PHOSPHOTRANSFER IN THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN-KINASE AS MEASURED BY VISCOSITY EXPERIMENTS [J].
ADAMS, JA ;
TAYLOR, SS .
BIOCHEMISTRY, 1992, 31 (36) :8516-8522
[4]   DIVALENT METAL-IONS INFLUENCE CATALYSIS AND ACTIVE-SITE ACCESSIBILITY IN THE CAMP-DEPENDENT PROTEIN-KINASE [J].
ADAMS, JA ;
TAYLOR, SS .
PROTEIN SCIENCE, 1993, 2 (12) :2177-2186
[5]   CORRECTION FOR LIGHT-ABSORPTION IN FLUORESCENCE STUDIES OF PROTEIN-LIGAND INTERACTIONS [J].
BIRDSALL, B ;
KING, RW ;
WHEELER, MR ;
LEWIS, CA ;
GOODE, SR ;
DUNLAP, RB ;
ROBERTS, GCK .
ANALYTICAL BIOCHEMISTRY, 1983, 132 (02) :353-361
[6]   Autophosphorylation dependent destabilization of the insulin receptor kinase domain: Tryptophan-1175 reports changes in the catalytic cleft [J].
Bishop, SM ;
Ross, JBA ;
Kohanski, RA .
BIOCHEMISTRY, 1999, 38 (10) :3079-3089
[7]   TRIOSEPHOSPHATE ISOMERASE CATALYSIS IS DIFFUSION CONTROLLED - APPENDIX - ANALYSIS OF TRIOSE PHOSPHATE EQUILIBRIA IN AQUEOUS-SOLUTION BY P-31 NMR [J].
BLACKLOW, SC ;
RAINES, RT ;
LIM, WA ;
ZAMORE, PD ;
KNOWLES, JR .
BIOCHEMISTRY, 1988, 27 (04) :1158-1167
[8]   Kinetic mechanisms of the forward and reverse pp60(c-src) tyrosine kinase reactions [J].
Boerner, RJ ;
Barker, SC ;
Knight, WB .
BIOCHEMISTRY, 1995, 34 (50) :16419-16423
[9]   Partial activation of the insulin receptor kinase domain by juxtamembrane autophosphorylation [J].
Cann, AD ;
Bishop, SM ;
Ablooglu, AJ ;
Kohanski, RA .
BIOCHEMISTRY, 1998, 37 (32) :11289-11300
[10]   Cis-autophosphorylation of juxtamembrane tyrosines in the insulin receptor kinase domain [J].
Cann, AD ;
Kohanski, RA .
BIOCHEMISTRY, 1997, 36 (25) :7681-7689