Unusual evolutionary history of the tRNA splicing endonuclease EndA: Relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases

被引:14
作者
Bujnicki, JM [1 ]
Rychlewski, L [1 ]
机构
[1] Inst Inst Mol & Cell Biol, Bioinformat Lab, PL-02109 Warsaw, Poland
关键词
protein evolution; endonuclease; homing; intron splicing; restriction-modification;
D O I
10.1110/ps.37101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tRNA splicing endoribonuclease EndA from Methanococcus jannaschii is a homotetramer formed via heterologous interaction between the two pairs of homodimers. Each monomer consists of two alpha/beta domains, the N-terminal domain (NTD) and the C-terminal domain (CTD) containing the RNase A-like active site. Comparison of the EndA coordinates with the publicly available protein structure database revealed the similarity of both domains to site-specific deoxyribonucleases: the NTD to the LAGLIDADG family and the CTD to the PD-(D/E)XK family. Superposition of the NTD on the catalytic domain of LAGLIDADG homing endonucleases allowed a suggestion to be made about which amino acid residues of the tRNA splicing nuclease might participate in formation of a presumptive cryptic deoxyribonuclease active site. On the other hand, the CTD and PD-(D/E)XK endonucleases, represented by restriction enzymes and a phage X exonuclease, were shown to share extensive similarities of the structural framework, to which entirely different active sites might be attached in two alternative locations. These findings suggest that EndA evolved from a fusion protein with at least two distinct endonuclease activities: the ribonuclease, which made it an essential "antitoxin" for the cells whose RNA genes were interrupted by introns, and the deoxyribonuclease, which provided the means for homing-like mobility. The residues of the noncatalytic CTDs from the positions corresponding to the catalytic side chains in PD-(D/E)XK deoxyribonucleases map to the surface at the opposite side to the tRNA binding site, for which no function has been implicated. Many restriction enzymes from the PD-(D/E)XK superfamily might have the potential to maintain an additional active or binding site at the face opposite the deoxyribonuclease active site, a property that can be utilized in protein engineering.
引用
收藏
页码:656 / 660
页数:5
相关论文
共 36 条
[1]   tRNA splicing [J].
Abelson, J ;
Trotta, CR ;
Li, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :12685-12688
[2]   Novel site-specific DNA endonucleases [J].
Aggarwal, AK ;
Wah, DA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (01) :19-25
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   PROKARYOTIC INTRONS AND INTEINS - A PANOPLY OF FORM AND FUNCTION [J].
BELFORT, M ;
REABAN, ME ;
COETZEE, T ;
DALGAARD, JZ .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :3897-3903
[5]   Homing endonucleases: keeping the house in order [J].
Belfort, M ;
Roberts, RJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3379-3388
[6]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[7]   BIOLOGY OF DNA RESTRICTION [J].
BICKLE, TA ;
KRUGER, DH .
MICROBIOLOGICAL REVIEWS, 1993, 57 (02) :434-450
[8]   Phylogeny of the restriction endonuclease-like superfamily inferred from comparison of protein structures [J].
Bujnicki, JM .
JOURNAL OF MOLECULAR EVOLUTION, 2000, 50 (01) :39-44
[9]   SELF-SPLICING OF GROUP-I INTRONS [J].
CECH, TR .
ANNUAL REVIEW OF BIOCHEMISTRY, 1990, 59 :543-568
[10]   The monomeric homing endonuclease PI-SceI has two catalytic centres for cleavage of the two strands of its DNA substrate [J].
Christ, F ;
Schoettler, S ;
Wende, W ;
Steuer, S ;
Pingoud, A ;
Pingoud, V .
EMBO JOURNAL, 1999, 18 (24) :6908-6916