Iron-sulfur cluster N2 of the Escherichia coli NADH:ubiquinone oxidoreductase (Complex I) is located on subunit NuoB

被引:48
作者
Flemming, D
Schlitt, A
Spehr, V
Bischof, T
Friedrich, T
机构
[1] Univ Freiburg, Inst Organ Chem & Biochem, D-79104 Freiburg, Germany
[2] Univ Dusseldorf, Inst Biochem, D-40225 Dusseldorf, Germany
关键词
D O I
10.1074/jbc.M308967200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The proton-pumping NADH: ubiquinone oxidoreductase, also called respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. One FMN and up to 9 iron-sulfur (Fe/S) clusters participate in the redox reaction. There is discussion that the EPR-detectable Fe/S cluster N2 is involved in proton pumping. However, the assignment of this cluster to a distinct subunit of the complex as well as the number of Fe/S clusters giving rise to the EPR signal are still under debate. Complex I from Escherichia coli consists of 13 polypetides called NuoA to N. Either subunit NuoB or NuoI could harbor Fe/S cluster N2. Whereas NuoB contains a unique motif for the binding of one Fe/S cluster, NuoI contains a typical ferredoxin motif for the binding of two Fe/S clusters. Individual mutation of all four conserved cysteine residues in NuoB resulted in a loss of complex I activity and of the EPR signal of N2 in the cytoplasmic membrane as well as in the isolated complex. Individual mutations of all eight conserved cysteine residues of NuoI revealed a variable phenotype. Whereas cluster N2 was lost in most NuoI mutants, it was still present in the cytoplasmic membranes of the mutants NuoI C63A and NuoI C102A. N2 was also detected in the complex isolated from the mutant NuoI C102A. From this we conclude that the Fe/S cluster N2 is located on subunit NuoB.
引用
收藏
页码:47602 / 47609
页数:8
相关论文
共 71 条
[1]   Function of conserved acidic residues in the PSST homologue of complex I (NADH:Ubiquinone oxidoreductase) from Yarrowia lipolytica [J].
Ahlers, PM ;
Zwicker, K ;
Kerscher, S ;
Brandt, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23577-23582
[2]   INTIMATE-RELATIONSHIPS OF THE LARGE AND THE SMALL SUBUNITS OF ALL NICKEL HYDROGENASES WITH 2 NUCLEAR-ENCODED SUBUNITS OF MITOCHONDRIAL NADH - UBIQUINONE OXIDOREDUCTASE [J].
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1144 (02) :221-224
[3]   Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH-ubiquinone oxidoreductase (Complex I) [J].
Albracht, SPJ ;
Hedderich, R .
FEBS LETTERS, 2000, 485 (01) :1-6
[4]   Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction [J].
Brandt, U .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1997, 1318 (1-2) :79-91
[5]   Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli [J].
Braun, M ;
Bungert, S ;
Friedrich, T .
BIOCHEMISTRY, 1998, 37 (07) :1861-1867
[6]   A SIMPLE AND RAPID METHOD FOR THE PREPARATION OF GRAM-NEGATIVE BACTERIAL GENOMIC DNA [J].
CHEN, WP ;
KUO, TT .
NUCLEIC ACIDS RESEARCH, 1993, 21 (09) :2260-2260
[7]   The NuoI subunit of the Rhodobacter capsulatus respiratory Complex I (equivalent to the bovine TYKY subunit) is required for proper assembly of the membraneous and peripheral domains of the enzyme [J].
Chevallet, M ;
Dupuis, A ;
Lunardi, J ;
VanBelzen, R ;
Albracht, SPJ ;
Issartel, JP .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 250 (02) :451-458
[8]   Two EPR-detectable [4Fe-4S] clusters, N2a and N2b, are bound to the NuoI (TYKY) subunit of NADH:ubiquinone oxidoreductase (Complex I) from Rhodobacter capsulatus [J].
Chevallet, M ;
Dupuis, A ;
Issartel, JP ;
Lunardi, JL ;
van Belzen, R ;
Albracht, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2003, 1557 (1-3) :51-66
[9]  
CONDON C, 1985, J BIOL CHEM, V260, P9427
[10]   ENERGY-INDUCED STRUCTURAL-CHANGES IN NADH-Q OXIDOREDUCTASE OF THE MITOCHONDRIAL RESPIRATORY-CHAIN [J].
DEJONG, AMP ;
KOTLYAR, AB ;
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1186 (03) :163-171