The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis

被引:138
作者
Hisamatsu, T
King, RW [1 ]
Helliwell, CA
Koshioka, M
机构
[1] Natl Inst Floricultural Sci, Tsukuba, Ibaraki 3058519, Japan
[2] CSIRO, Plant Ind, Canberra, ACT 2601, Australia
关键词
D O I
10.1104/pp.104.059055
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Long day (LD) exposure of rosette plants causes rapid stem/petiole elongation, a more vertical growth habit, and flowering; all changes are suggestive of a role for the gibberellin (GA) plant growth regulators. For Arabidopsis ( Arabidopsis thaliana) L. (Heynh), we show that enhancement of petiole elongation by a far-red (FR)-rich LD is mimicked by a brief ( 10 min) end-of-day (EOD) FR exposure in short day (SD). The EOD response shows red ( R)/FR photoreversibility and is not affected in a phytochrome (PHY) A mutant so it is mediated by PHYB and related PHYs. FR photoconversion of PHYB to an inactive form activates a signaling pathway, leading to increased GA biosynthesis. Of 10 GA biosynthetic genes, expression of the 20-oxidase, AtGA20ox2, responded most to FR ( up to a 40-fold increase within 3 h). AtGA20ox1 also responded but to a lesser extent. Stimulation of petiole elongation by EOD FR is reduced in a transgenic AtGA20ox2 hairpin gene silencing line. By contrast, it was only in SD that a T-DNA insertional mutant of AtGA20ox1 (ga5-3) showed reduced response. Circadian entrainment to a daytime pattern provides an explanation for the SD expression of AtGA20ox1. Conversely, the strong EOD/LD FR responses of AtGA20ox2 may reflect its independence of circadian regulation. While FR acting via PHYB increases expression of AtGA20ox2, other GA biosynthetic genes are known to respond to R rather than FR light and/or to other PHYs. Thus, there must be different signal transduction pathways, one at least showing a positive response to active PHYB and another showing a negative response.
引用
收藏
页码:1106 / 1116
页数:11
相关论文
共 30 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Phytochrome, photosynthesis and flowering of Arabidopsis thaliana:: photophysiological studies using mutants and transgenic lines [J].
Bagnall, DJ ;
King, RW .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 2001, 28 (05) :401-408
[3]   Far-red light stimulates internode elongation, cell division, cell elongation, and gibberellin levels in bean [J].
Beall, FD ;
Yeung, EC ;
Pharis, RP .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1996, 74 (05) :743-752
[4]   Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis [J].
Blázquez, MA ;
Trénor, M ;
Weigel, D .
PLANT PHYSIOLOGY, 2002, 130 (04) :1770-1775
[5]   A REVERSIBLE PHOTOREACTION CONTROLLING SEED GERMINATION [J].
BORTHWICK, HA ;
HENDRICKS, SB ;
PARKER, MW ;
TOOLE, EH ;
TOOLE, VK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1952, 38 (08) :662-666
[6]   Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato [J].
Carrera, E ;
Jackson, SD ;
Prat, S .
PLANT PHYSIOLOGY, 1999, 119 (02) :765-773
[7]   Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes [J].
Coles, JP ;
Phillips, AL ;
Croker, SJ ;
García-Lepe, R ;
Lewis, MJ ;
Hedden, P .
PLANT JOURNAL, 1999, 17 (05) :547-556
[8]   A genomic analysis of the shade avoidance response in Arabidopsis [J].
Devlin, PF ;
Yanovsky, MJ ;
Kay, SA .
PLANT PHYSIOLOGY, 2003, 133 (04) :1617-1629
[9]   Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis [J].
Franklin, KA ;
Praekelt, U ;
Stoddart, WM ;
Billingham, OE ;
Halliday, KJ ;
Whitelam, GC .
PLANT PHYSIOLOGY, 2003, 131 (03) :1340-1346
[10]   Light regulation of gibberellin biosynthesis and mode of action [J].
García-Martinez, JL ;
Gil, J .
JOURNAL OF PLANT GROWTH REGULATION, 2001, 20 (04) :354-368