Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages

被引:59
作者
Prost, Lynne R.
Sanowar, Sarah
Miller, Samuel I.
机构
[1] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[3] Univ Washington, Dept Med, Seattle, WA USA
关键词
phagosome; macrophage; Salmonella; pathogenesis; anti-microbial peptides; pH;
D O I
10.1111/j.1600-065X.2007.00557.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Salmonella enterica is a facultative intracellular pathogen that replicates within macrophages. The interaction of this pathogen with mammalian cells is a complex process involving hundreds of bacterial products that are sensed by and alter mammalian hosts. Numerous bacterial genes and their protein products have been identified that are required for Salmonella to resist killing by host innate immunity and to modify host processes. Many of these genes are regulated by a specific bacterial sensor, the PhoQ protein, which responds to the acidified phagosome environment. PhoQ is a sensor histidine kinase, which when activated in vivo within acidified macrophage phagosomes, regulates cell surface modifications that promote resistance to antimicrobial peptides and oxidative stress, alter the phagosome to promote intracellular survival, and reduce innate immune recognition. In this review, we discuss mechanisms by which Salmonella interacts with macrophages and focus in detail on recent reports describing the role of antimicrobial peptides and pH in PhoQ activation.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 72 条
[1]  
Adams P, 2001, PROTEOMICS, V1, P597, DOI 10.1002/1615-9861(200104)1:4<597::AID-PROT597>3.3.CO
[2]  
2-G
[3]   SPACIOUS PHAGOSOME FORMATION WITHIN MOUSE MACROPHAGES CORRELATES WITH SALMONELLA SEROTYPE PATHOGENICITY AND HOST SUSCEPTIBILITY [J].
ALPUCHEARANDA, CM ;
BERTHIAUME, EP ;
MOCK, B ;
SWANSON, JA ;
MILLER, SI .
INFECTION AND IMMUNITY, 1995, 63 (11) :4456-4462
[4]   SALMONELLA STIMULATE MACROPHAGE MACROPINOCYTOSIS AND PERSIST WITHIN SPACIOUS PHAGOSOMES [J].
ALPUCHEARANDA, CM ;
RACOOSIN, EL ;
SWANSON, JA ;
MILLER, SI .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 179 (02) :601-608
[5]   SALMONELLA-TYPHIMURIUM ACTIVATES VIRULENCE GENE-TRANSCRIPTION WITHIN ACIDIFIED MACROPHAGE PHAGOSOMES [J].
ARANDA, CMA ;
SWANSON, JA ;
LOOMIS, WP ;
MILLER, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10079-10083
[6]   Recognition of antimicrobial peptides by a bacterial sensor kinase [J].
Bader, MW ;
Sanowar, S ;
Daley, ME ;
Schneider, AR ;
Cho, US ;
Xu, WQ ;
Klevit, RE ;
Le Moual, H ;
Miller, S .
CELL, 2005, 122 (03) :461-472
[7]   Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides [J].
Bader, MW ;
Navarre, WW ;
Shiau, W ;
Nikaido, H ;
Frye, JG ;
McClelland, M ;
Fang, FC ;
Miller, SI .
MOLECULAR MICROBIOLOGY, 2003, 50 (01) :219-230
[8]   A low PH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress [J].
Bearson, BL ;
Wilson, L ;
Foster, JW .
JOURNAL OF BACTERIOLOGY, 1998, 180 (09) :2409-2417
[9]   A PHOP-REPRESSED GENE PROMOTES SALMONELLA-TYPHIMURIUM INVASION OF EPITHELIAL-CELLS [J].
BEHLAU, I ;
MILLER, SI .
JOURNAL OF BACTERIOLOGY, 1993, 175 (14) :4475-4484
[10]   Salmonella maintains the integrity of its intracellular vacuole through the action of SifA [J].
Beuzón, CR ;
Méresse, S ;
Unsworth, KE ;
Ruíz-Albert, J ;
Garvis, S ;
Waterman, SR ;
Ryder, TA ;
Boucrot, E ;
Holden, DW .
EMBO JOURNAL, 2000, 19 (13) :3235-3249