Context-dependent secondary structure formation of a designed protein sequence

被引:342
作者
Minor, DL
Kim, PS
机构
[1] MIT,WHITEHEAD INST BIOMED RES,HOWARD HUGHES MED INST,DEPT BIOL,CAMBRIDGE,MA 02142
[2] MIT,WHITEHEAD INST BIOMED RES,HOWARD HUGHES MED INST,DEPT CHEM,CAMBRIDGE,MA 02142
关键词
D O I
10.1038/380730a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
PROTEIN secondary structures have been viewed as fundamental building blocks for protein folding, structure and design. Previous studies indicate that the propensities of individual amino acids to form particular secondary structures are the result of a combination of local conformational preferences(1,2) and non-local factors(3-7). To examine the extent to which non-local factors influence the formation of secondary structural elements, we have designed an 11-amino-acid sequence (dubbed the 'chameleon' sequence) that folds as an alpha-helix when in one position but as a beta-sheet when in another position of the primary sequence of the IgG-binding domain of protein G (GB1). Both proteins, chameleon-alpha and chameleon-beta, are folded into structures similar to native GB1, as judged hy several biophysical criteria. Our results demonstrate that non-local interactions can determine the secondary structure of peptide sequences of substantial length. They also support views of protein folding that favour tertiary interactions as dominant determinants of structure (for example, see refs 8,9).
引用
收藏
页码:730 / 734
页数:5
相关论文
共 31 条
[1]   1.67-ANGSTROM X-RAY STRUCTURE OF THE B2 IMMUNOGLOBULIN-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G AND COMPARISON TO THE NMR STRUCTURE OF THE B1 DOMAIN [J].
ACHARI, A ;
HALE, SP ;
HOWARD, AJ ;
CLORE, GM ;
GRONENBORN, AM ;
HARDMAN, KD ;
WHITLOW, M .
BIOCHEMISTRY, 1992, 31 (43) :10449-10457
[2]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[4]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[5]   PROTEIN DESIGN - A HIERARCHICAL APPROACH [J].
BRYSON, JW ;
BETZ, SF ;
LU, HS ;
SUICH, DJ ;
ZHOU, HXX ;
ONEIL, KT ;
DEGRADO, WF .
SCIENCE, 1995, 270 (5238) :935-941
[6]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[7]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[8]   STABILITY OF ALPHA-HELICES [J].
CHAKRABARTTY, A ;
BALDWIN, RL .
ADVANCES IN PROTEIN CHEMISTRY, VOL 46, 1995, 46 :141-176
[9]   CONFORMATIONAL PARAMETERS FOR AMINO-ACIDS IN HELICAL, BETA-SHEET, AND RANDOM COIL REGIONS CALCULATED FROM PROTEINS [J].
CHOU, PY ;
FASMAN, GD .
BIOCHEMISTRY, 1974, 13 (02) :211-222
[10]   ORIGINS OF STRUCTURAL DIVERSITY WITHIN SEQUENTIALLY IDENTICAL HEXAPEPTIDES [J].
COHEN, BI ;
PRESNELL, SR ;
COHEN, FE .
PROTEIN SCIENCE, 1993, 2 (12) :2134-2145