Getting around a lower bound for the minimum Hausdorff distance

被引:12
作者
Chew, LP
Kedem, K
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1998年 / 10卷 / 03期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
geometric pattern matching; approximate matching; segment tree; algorithm; optimization;
D O I
10.1016/S0925-7721(97)00032-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following geometric pattern matching problem: find the minimum Hausdorff distance between two point sets under translation with L-1 or L-infinity as the underlying metric. Huttenlocher, Kedem and Sharir have shown that this minimum distance can be found by constructing the upper envelope of certain Voronoi surfaces. Further, they show that if the two sets are each of cardinality n then the complexity of the upper envelope of such surfaces is Omega(n(3)). We examine the question of whether one can get around this cubic lower bound, and show that under the L-1 and L-infinity metrics, the time to compute the minimum Hausdorff distance between two point sets is O(n(2)log(2) n). (C) 1998 Elsevier Science B.V.
引用
收藏
页码:197 / 202
页数:6
相关论文
共 10 条
[1]   APPLICATIONS OF PARAMETRIC SEARCHING IN GEOMETRIC OPTIMIZATION [J].
AGARWAL, PK ;
SHARIR, M ;
TOLEDO, S .
JOURNAL OF ALGORITHMS, 1994, 17 (03) :292-318
[2]  
CHEW LP, 1995, P 3 ANN EUR S ALG, P264
[3]  
FREDERICKSON GN, 1991, PROCEEDINGS OF THE SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P168
[4]   FINDING KTH PATHS AND PARA-CENTERS BY GENERATING AND SEARCHING GOOD DATA-STRUCTURES [J].
FREDERICKSON, GN ;
JOHNSON, DB .
JOURNAL OF ALGORITHMS, 1983, 4 (01) :61-80
[5]   THE UPPER ENVELOPE OF VORONOI SURFACES AND ITS APPLICATIONS [J].
HUTTENLOCHER, DP ;
KEDEM, K ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (03) :267-291
[6]  
HUTTENLOCHER DP, 1990, PROCEEDINGS OF THE SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, P340, DOI 10.1145/98524.98599
[7]   ON THE UNION OF JORDAN REGIONS AND COLLISION-FREE TRANSLATIONAL MOTION AMIDST POLYGONAL OBSTACLES [J].
KEDEM, K ;
LIVNE, R ;
PACH, J ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) :59-71
[8]  
MEHLHORN K, 1984, DATA STRUCTURES ALGO, V3
[9]   NEW UPPER-BOUNDS IN KLEE MEASURE PROBLEM [J].
OVERMARS, MH ;
YAP, CK .
SIAM JOURNAL ON COMPUTING, 1991, 20 (06) :1034-1045
[10]  
Preparata F., 2012, Computational geometry: an introduction