New globally convergent training scheme based on the resilient propagation algorithm

被引:100
作者
Anastasladis, AD
Magoulas, GD
Vrahatis, MN
机构
[1] Univ London, Birkbeck Coll, Sch Comp Sci & Informat Syst, London WC1 7HX, England
[2] Univ Patras, UPAIRC, Dept Math, Computat Intelligence Lab, GR-26110 Patras, Greece
关键词
supervised learning; batch learning; first-order training algorithms; convergence analysis; global convergence property; Rprop; IRprop;
D O I
10.1016/j.neucom.2004.11.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new globally convergent modification of the Resilient Propagation-Rprop algorithm is presented. This new addition to the Rprop family of methods builds on a mathematical framework for the convergence analysis that ensures that the adaptive local learning rates of the Rprop's schedule generate a descent search direction at each iteration. Simulation results in six problems of the PROBEN1 benchmark collection show that the globally convergent modification of the Rprop algorithm exhibits improved learning speed, and compares favorably against the original Rprop and the Improved Rprop, a recently proposed Rrpop modification. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 270
页数:18
相关论文
共 28 条
[1]  
Anastasiadis AD, 2003, LECT NOTES COMPUT SC, V2810, P430, DOI 10.1007/978-3-540-45231-7_40
[2]  
[Anonymous], P INT JOINT C NEUR N
[3]  
[Anonymous], ACTA NUMERICA 1992
[4]   1ST-ORDER AND 2ND-ORDER METHODS FOR LEARNING - BETWEEN STEEPEST DESCENT AND NEWTON METHOD [J].
BATTITI, R .
NEURAL COMPUTATION, 1992, 4 (02) :141-166
[5]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[6]  
Dennis J.E., 1996, NUMERICAL METHODS UN
[7]  
Gill P. E., 1981, PRACTICAL OPTIMIZATI
[8]   TRAINING FEEDFORWARD NETWORKS WITH THE MARQUARDT ALGORITHM [J].
HAGAN, MT ;
MENHAJ, MB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06) :989-993
[9]  
HORTON P, 1997, P INT SYST MOL BIOL, P368
[10]   Empirical evaluation of the improved Rprop learning algorithms [J].
Igel, C ;
Hüsken, M .
NEUROCOMPUTING, 2003, 50 :105-123