Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix

被引:344
作者
Blake, C [1 ]
Serpell, L [1 ]
机构
[1] UNIV OXFORD,OXFORD CTR MOL SCI,OXFORD OX1 3QU,ENGLAND
基金
英国医学研究理事会;
关键词
amyloid; beta-sheet helix; fibre diffraction; molecular model; protofilament;
D O I
10.1016/S0969-2126(96)00104-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Amyloid diseases, which include Alzheimer's disease and the transmissible spongiform encephalopathies, are characterized by the extracellular deposition of abnormal protein fibrils derived from soluble precursor proteins. Although different precursors seem to generate similar fibrils, no adequate molecular structure of amyloid fibrils has been produced using modern techniques. Knowledge of the fibril structure is essential to understanding the molecular mechanism of amyloid formation and could lead to the development of agents to inhibit or reverse the process. Results: The structure of amyloid fibrils from patients with familial amyloidotic polyneuropathy (FAP), which are derived from transthyretin (TTR) variants, has been investigated by fibre diffraction methods using synchrotron radiation. For the first time a significant high-angle diffraction pattern has been observed showing meridional reflections out to 2 Angstrom resolution. This pattern was fully consistent with the previously reported cross-beta structure for the fibril, but also reveals a new large scale fibre repeat of 115 Angstrom. We interpret this pattern as that of a repeating unit of 24 beta strands, which form a complete helical turn of beta sheet about an axis parallel to the fibre axis. This structure has not been observed previously. We have built a model of the protofilament of the FAP amyloid fibril based on this interpretation, composed of four beta sheets related by a single helix axis coincident with the fibre axis, and shown that it is consistent with the observed X-ray data. Conclusions: This work suggests that amyloid fibrils have a novel molecular structure consisting of beta sheets extended in regular helical twists along the length of the fibre. This implies that the polypeptide chains in the fibres are hydrogen-bonded together along the entire length of the fibres, thereby accounting for their great stability. The proposed structure of the FAP fibril requires a TTR building block that is structurally different from the native tetramer. This is likely to be either a monomer or dimer with reorganized or truncated beta sheets, suggesting that amyloid formation may require significant structural change in precursor proteins.
引用
收藏
页码:989 / 998
页数:10
相关论文
共 32 条