Rates of DNA duplication and mitochondrial DNA insertion in the human genome

被引:95
作者
Bensasson, D [1 ]
Feldman, MW [1 ]
Petrov, DA [1 ]
机构
[1] Stanford Univ, Sch Biol Sci, Stanford, CA 94305 USA
关键词
Numt; numtDNA; segmental duplication; human population genetic markers;
D O I
10.1007/s00239-003-2485-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hundreds of mitochondrial pseudogenes in the human nuclear genome sequence (numts) constitute an excellent system for studying and dating DNA duplications and insertions. These pseudogenes are associated with many complete mitochondrial genome sequences and through those with a good fossil record. By comparing individual numts with primate and other mammalian mitochondrial genome sequences, we estimate that these numts arose continuously over the last 58 million years. Our pairwise comparisons between numts suggest that most human numts arose from different mitochondrial insertion events and not by DNA duplication within the nuclear genome. The nuclear genome appears to accumulate mtDNA insertions at a rate high enough to predict within-population polymorphism for the presence/absence of many recent mtDNA insertions. Pairwise analysis of numts and their flanking DNA produces an estimate for the DNA duplication rate in humans of 2.2 x 10(-9) per numt per year. Thus, a nucleotide site is about as likely to be involved in a duplication event as it is to change by point substitution. This estimate of the rate of DNA duplication of noncoding DNA is based on sequences that are not in duplication hotspots, and is close to the rate reported for functional genes in other species.
引用
收藏
页码:343 / 354
页数:12
相关论文
共 35 条
[1]   Recent segmental duplications in the human genome [J].
Bailey, JA ;
Gu, ZP ;
Clark, RA ;
Reinert, K ;
Samonte, RV ;
Schwartz, S ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Eichler, EE .
SCIENCE, 2002, 297 (5583) :1003-1007
[2]   Human-specific duplication and mosaic transcripts: The recent paralogous structure of chromosome 22 [J].
Bailey, JA ;
Yavor, AM ;
Viggiano, L ;
Misceo, D ;
Horvath, JE ;
Archidiacono, N ;
Schwartz, S ;
Rocchi, M ;
Eichler, EE .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (01) :83-100
[3]   Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes [J].
Bensasson, D ;
Zhang, DX ;
Hewitt, GM .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (03) :406-415
[4]   Mitochondrial pseudogenes: evolution's misplaced witnesses [J].
Bensasson, D ;
Zhang, DX ;
Hartl, DL ;
Hewitt, GM .
TRENDS IN ECOLOGY & EVOLUTION, 2001, 16 (06) :314-321
[5]   MITOCHONDRIAL-DNA SEQUENCES OF PRIMATES - TEMPO AND MODE OF EVOLUTION [J].
BROWN, WM ;
PRAGER, EM ;
WANG, A ;
WILSON, AC .
JOURNAL OF MOLECULAR EVOLUTION, 1982, 18 (04) :225-239
[6]   MITOCHONDRIAL DNA-LIKE SEQUENCES IN THE HUMAN NUCLEAR GENOME - CHARACTERIZATION AND IMPLICATIONS IN THE EVOLUTION OF MITOCHONDRIAL-DNA [J].
FUKUDA, M ;
WAKASUGI, S ;
TSUZUKI, T ;
NOMIYAMA, H ;
SHIMADA, K ;
MIYATA, T .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 186 (02) :257-266
[7]   GENE-TRANSFER - MITOCHONDRIA TO NUCLEUS [J].
GELLISSEN, G ;
MICHAELIS, G .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 503 :391-401
[8]   Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence [J].
Goodman, M ;
Porter, CA ;
Czelusniak, J ;
Page, SL ;
Schneider, H ;
Shoshani, J ;
Gunnell, G ;
Groves, CP .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 1998, 9 (03) :585-598
[9]   DELETIONS IN PROCESSED PSEUDOGENES ACCUMULATE FASTER IN RODENTS THAN IN HUMANS [J].
GRAUR, D ;
SHUALI, Y ;
LI, WH .
JOURNAL OF MOLECULAR EVOLUTION, 1989, 28 (04) :279-285
[10]   Extent of gene duplication in the genomes of Drosophila, nematode, and yeast [J].
Gu, ZL ;
Cavalcanti, A ;
Chen, FC ;
Bouman, P ;
Li, WH .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (03) :256-262