Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties

被引:112
作者
Huang, Jiarui [1 ]
Xu, Xiaojuan [1 ]
Gu, Cuiping [1 ]
Yang, Min [1 ]
Yang, Meng [1 ]
Liu, Jinhuai [2 ]
机构
[1] Anhui Normal Univ, Anhui Key Lab Funct Mol Solids, Coll Chem & Mat Sci, Wuhu 241000, Peoples R China
[2] Chinese Acad Sci, Inst Intelligent Machines, Res Ctr Biomimet Funct Mat & Sensing Devices, Hefei 230031, Peoples R China
关键词
VOLATILE ORGANIC-COMPOUNDS; ASSISTED HYDROTHERMAL PROCESS; FORMATION MECHANISM; NANOSTRUCTURES; FABRICATION; CONVERSION; SENSORS;
D O I
10.1039/c1jm11292a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Square slab-like and flower-like hydrated tungsten oxide three-dimensional architectures were synthesized by acidic precipitation of sodium tungstate solution at mild temperature. Techniques of X-ray diffraction, scanning electron microscopy, thermogravimetric-differential thermalgravimetric analysis, and transmission electron microscopy were used to characterize the structure and morphology of the products. The experimental results show that the square slab-like and flower-like WO3 center dot H2O architectures can be obtained by addition of a varying amount of 10.0 M HCl solution. The corresponding tungsten oxide three-dimensional architectures were obtained after calcinations at 400 degrees C. Finally, the obtained WO3 three-dimensional architectures were used as sensitive materials in the experiments. Compared with WO3 square slabs, the as-prepared WO3 microflowers exhibit a good response and reversibility to some organic gases, such as toluene and acetone. The responses to 100 ppm toluene and acetone are 16.7 and 17.4, respectively, at a working temperature of 320 degrees C. In addition, the sensors also exhibit a good response to ethanol, methanol and n-butanol, which indicates that the flower-like WO3 nanostructures are highly promising for applications of gas sensors.
引用
收藏
页码:13283 / 13289
页数:7
相关论文
共 39 条
[1]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[2]   An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties [J].
Boeglin, ML ;
Wessels, D ;
Henshel, D .
ENVIRONMENTAL RESEARCH, 2006, 100 (02) :242-254
[3]   Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection [J].
Cao, Baobao ;
Chen, Jiajun ;
Tang, Xiaojun ;
Zhou, Weilie .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (16) :2323-2327
[4]   The enhanced alcohol-sensing response of ultrathin WO3 nanoplates [J].
Chen, Deliang ;
Hou, Xianxiang ;
Wen, Hejing ;
Wang, Yu ;
Wang, Hailong ;
Li, Xinjian ;
Zhang, Rui ;
Lu, Hongxia ;
Xu, Hongliang ;
Guan, Shaokang ;
Sun, Jing ;
Gao, Lian .
NANOTECHNOLOGY, 2010, 21 (03)
[5]   Biomolecule-Assisted Synthesis of In(OH)3 Hollow Spherical Nanostructures Constructed with Well-Aligned Nanocubes and Their Conversion into C-In2O3 [J].
Chen, Li-Yong ;
Zhang, Zu-De .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (48) :18798-18803
[6]   Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications [J].
Gowda, Sanketh R. ;
Reddy, Arava Leela Mohana ;
Shaijumon, Manikoth M. ;
Zhan, Xiaobo ;
Ci, Lijie ;
Ajayan, Pulickel M. .
NANO LETTERS, 2011, 11 (01) :101-106
[7]   Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites [J].
Han, Xi-Guang ;
He, Hui-Zhong ;
Kuang, Qin ;
Zhou, Xi ;
Zhang, Xian-Hua ;
Xu, Tao ;
Xie, Zhao-Xiong ;
Zheng, Lan-Sun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (02) :584-589
[8]   Sensory eye irritation in humans exposed to mixtures of volatile organic compounds [J].
Hempel-Jorgensen, A ;
Kjærgaard, SK ;
Molhave, L ;
Hudnell, KH .
ARCHIVES OF ENVIRONMENTAL HEALTH, 1999, 54 (06) :416-424
[9]   Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property [J].
Huang, Jiarui ;
Yu, Kun ;
Gu, Cuiping ;
Zhai, Muheng ;
Wu, Youjie ;
Yang, Min ;
Liu, Jinhuai .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 147 (02) :467-474
[10]   Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property [J].
Huang, Jiarui ;
Wu, Youjie ;
Gu, Cuiping ;
Zhai, Muheng ;
Yu, Kun ;
Yang, Min ;
Liu, Jinhuai .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 146 (01) :206-212