Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells

被引:103
作者
Balciunaite, E
Spektor, A
Lents, NH
Cam, H
Riele, HT
Scime, A
Rudnicki, MA
Young, R
Dynlacht, BD
机构
[1] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
[2] NYU, Inst Canc, New York, NY 10016 USA
[3] Netherlands Canc Inst, Div Mol Biol, NL-1066 CX Amsterdam, Netherlands
[4] Ottawa Hlth Res Inst, Program Mol Med, Ottawa, ON K1H 8L6, Canada
[5] Whitehead Inst Biomed Res, Cambridge Ctr 9, Cambridge, MA 02142 USA
关键词
D O I
10.1128/MCB.25.18.8166-8178.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biochemical and genetic studies have determined that retinoblastoma protein (pRB) tumor suppressor family members have overlapping functions. However, these studies have largely failed to distinguish functional differences between the highly related p107 and p130 proteins. Moreover, most studies pertaining to the pRB family and its principal target, the E2F transcription factor, have focused on cells that have reinitiated a cell cycle from quiescence, although recent studies suggest that cycling cells exhibit layers of regulation distinct from mitogenically stimulated cells. Using genome-wide chromatin immunoprecipitation, we show that there are distinct classes of genes directly regulated by unique combinations of E2F4, p107, and p130, including a group of genes specifically regulated in cycling cells. These groups exhibit both distinct histone acetylation signatures and patterns of mammalian Sin3B corepressor recruitment. Our findings suggest that cell cycledependent repression results from recruitment of an unexpected array of diverse complexes and reveals specific differences between transcriptional regulation in cycling and quiescent cells. In addition, factor location analyses have, for the first time, allowed the identification of novel and specific targets of the highly related transcriptional regulators p107 and p130, suggesting new and distinct regulatory networks engaged by each protein in continuously cycling cells.
引用
收藏
页码:8166 / 8178
页数:13
相关论文
共 52 条
[1]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[2]   Context, tissue plasticity, and cancer: Are tumor stem cells also regulated by the microenvironment? [J].
Bissell, MJ ;
LaBarge, MA .
CANCER CELL, 2005, 7 (01) :17-23
[3]   An initial blueprint for myogenic differentiation [J].
Blais, A ;
Tsikitis, M ;
Acosta-Alvear, D ;
Sharan, R ;
Kluger, Y ;
Dynlacht, BD .
GENES & DEVELOPMENT, 2005, 19 (05) :553-569
[4]   Discovery of new potentially defective alleles of human CYP2C9 [J].
Blaisdell, J ;
Jorge-Nebert, LF ;
Coulter, S ;
Ferguson, SS ;
Lee, SJ ;
Chanas, B ;
Xi, T ;
Mohrenweiser, H ;
Ghanayem, B ;
Goldstein, JA .
PHARMACOGENETICS, 2004, 14 (08) :527-537
[5]   A common set of gene regulatory networks links metabolism and growth inhibition [J].
Cam, H ;
Balciunaite, E ;
Blais, A ;
Spektor, A ;
Scarpulla, RC ;
Young, R ;
Kluger, Y ;
Dynlacht, BD .
MOLECULAR CELL, 2004, 16 (03) :399-411
[6]   Emerging roles for E2F: Beyond the G1/S transition and DNA replication [J].
Cam, H ;
Dynlacht, BD .
CANCER CELL, 2003, 3 (04) :311-316
[7]   E2F-6:: a novel member of the E2F family is an inhibitor of E2F-dependent transcription [J].
Cartwright, P ;
Müller, H ;
Wagener, C ;
Holm, K ;
Helin, K .
ONCOGENE, 1998, 17 (05) :611-623
[8]   Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo [J].
Christova, R ;
Oelgeschläger, T .
NATURE CELL BIOLOGY, 2002, 4 (01) :79-82
[9]   Opposing roles of pRB and p107 in adipocyte differentiation [J].
Classon, M ;
Kennedy, BK ;
Mulloy, R ;
Harlow, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :10826-10831
[10]   Shared role of the pRB-related p130 and p107 proteins in limb development [J].
Cobrinik, D ;
Lee, MH ;
Hannon, G ;
Mulligan, G ;
Bronson, RT ;
Dyson, N ;
Harlow, E ;
Beach, D ;
Weinberg, RA ;
Jacks, T .
GENES & DEVELOPMENT, 1996, 10 (13) :1633-1644