Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain

被引:107
作者
Korolainen, MA
Auriola, S
Nyman, TA
Alafuzoff, I
Pirttilä, T
机构
[1] Univ Kuopio, Dept Neurosci & Neurol, FIN-70211 Kuopio, Finland
[2] Univ Kuopio, Brain Res Unit, Clin Res Ctr Mediteknia, FIN-70211 Kuopio, Finland
[3] Univ Kuopio, Dept Pharmaceut Chem, FIN-70211 Kuopio, Finland
[4] Kuopio Univ Hosp, Dept Neurol, SF-70210 Kuopio, Finland
[5] Kuopio Univ Hosp, Dept Pathol, SF-70210 Kuopio, Finland
[6] Univ Turku, Ctr Biotechnol, Turku, Finland
[7] Abo Akad Univ, Turku, Finland
基金
芬兰科学院;
关键词
Alzheimer's disease; brain; glial fibrillary acidic protein; glycosylation; immunoblotting; oxidation; phosphorylation; post-mortem; proteomics; two-dimensional gel electrophoresis;
D O I
10.1016/j.nbd.2005.05.021
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Chronic inflammation is known to play an important role in the heterogeneous pathogenesis of Alzheimer's disease (AD). Activated astrocytes expressing glial fibrillary acidic protein (GFAP) are closely associated with AD pathology, such as tangles, neuritic plaques and amyloid depositions. Altogether, 46 soluble isoforms of GFAP were separated and most of them quantified by two-dimensional immunoblotting in frontal cortices of AD patients and age-matched controls. A 60% increase in the amount of more acidic isoforms of GFAP was observed in AD and these isoforms were both phosphorylated and N-glycosylated, while more basic isoforms were O-glycosylated and exhibited no quantitative differences between post-mortem AD and control brains. These data highlight the importance of exploring isoform-specific levels of proteins in pathophysiological conditions since modifications of proteins determine their activity state, localization, turnover and interaction with other molecules. Mechanisms, structures and functional consequences of modification of GFAP isoforms remain to be clarified. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:858 / 870
页数:13
相关论文
共 102 条
[1]   Inflammation and Alzheimer's disease [J].
Akiyama, H ;
Barger, S ;
Barnum, S ;
Bradt, B ;
Bauer, J ;
Cole, GM ;
Cooper, NR ;
Eikelenboom, P ;
Emmerling, M ;
Fiebich, BL ;
Finch, CE ;
Frautschy, S ;
Griffin, WST ;
Hampel, H ;
Hull, M ;
Landreth, G ;
Lue, LF ;
Mrak, R ;
Mackenzie, IR ;
McGeer, PL ;
O'Banion, MK ;
Pachter, J ;
Pasinetti, G ;
Plata-Salaman, C ;
Rogers, J ;
Rydel, R ;
Shen, Y ;
Streit, W ;
Strohmeyer, R ;
Tooyoma, I ;
Van Muiswinkel, FL ;
Veerhuis, R ;
Walker, D ;
Webster, S ;
Wegrzyniak, B ;
Wenk, G ;
Wyss-Coray, T .
NEUROBIOLOGY OF AGING, 2000, 21 (03) :383-421
[2]  
ALAFUZOFF I, 1999, STROKE, V30, P613
[3]   Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia [J].
Arnold, SE ;
Franz, BR ;
Trojanowski, JQ ;
Moberg, PJ ;
Gur, RE .
ACTA NEUROPATHOLOGICA, 1996, 91 (03) :269-277
[4]   An unconventional hypothesis of oxidation in Alzheimer's disease: Intersections with excitotoxicity [J].
Barger, SW .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 :3286-3295
[5]   PATTERNS OF GLIOSIS IN ALZHEIMERS-DISEASE AND AGING CEREBRUM [J].
BEACH, TG ;
WALKER, R ;
MCGEER, EG .
GLIA, 1989, 2 (06) :420-436
[6]   Activities of key glycolytic enzymes in the brains of patients with Alzheimer's disease [J].
Bigl, M ;
Brückner, MK ;
Arendt, T ;
Bigl, V ;
Eschrich, K .
JOURNAL OF NEURAL TRANSMISSION, 1999, 106 (5-6) :499-511
[7]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[8]   Demonstration of Amyloid Deposits and Neurofibrillary Changes in Whole Brain Sections [J].
Braak, Heiko ;
Braak, Eva .
BRAIN PATHOLOGY, 1991, 1 (03) :213-216
[9]   Tau protein isoforms, phosphorylation and role in neurodegenerative disorders [J].
Buée, L ;
Bussière, T ;
Buée-Scherrer, V ;
Delacourte, A ;
Hof, PR .
BRAIN RESEARCH REVIEWS, 2000, 33 (01) :95-130
[10]   Site-specific regulation of Alzheimer-like tau phosphorylation in living neurons [J].
Burack, MA ;
Halpain, S .
NEUROSCIENCE, 1996, 72 (01) :167-184