Zn2+-induced reversible dissociation of subunit Rpn10/p54 of the Drosophila 26 S proteasome

被引:20
作者
Kiss, P
Szabó, A
Hunyadi-Gulyás, E
Medzihradszky, KF
Lipinszki, Z
Pál, M
Udvardy, A
机构
[1] Hungarian Acad Sci, Biol Res Ctr, Inst Biochem, H-6701 Szeged, Hungary
[2] Hungarian Acad Sci, Biol Res Ctr, Proteom Res Grp, H-6701 Szeged, Hungary
[3] Univ Calif San Francisco, Sch Pharm, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
assembly-disassembly; catalytic particle; regulatory particle; 26 S proteasome; subunit Rpn I 0/p54; zinc;
D O I
10.1042/BJ20050523
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the presence of Zn2+, the Drosophila 26 S proteasome disassembles into RP (regulatory particle) and CP (catalytic particle), this process being accompanied by the dissociation of subunit Rpn10/p54, the ubiquitin receptor subunit of the proteasome. The dissociation of Rpn 10/p54 induces extensive rearrangements within the lid subcomplex of the RP, while the structure of the ATPase ring of the base subcomplex seems to be maintained. As a consequence of the dissociation of the RP, the peptidase activity of the 26 S proteasome is lost. The Zn2+-induced structural and functional changes are fully reversible; removal of Zn2+ is followed by reassociation of subunit Rpn 10/p54 to the RP, reassembly of the 26 S proteasome and resumption of the peptidase activity. After the Zn2+-induced dissociation, Rpn10/p54 interacts with a set of non-proteasomal proteins. Hsp82 (heat-shock protein 82) has been identified by MS as the main Rpn10/p54-interacting protein, suggesting its role in the reassembly of the 26 S proteasome after Zn2+ removal. The physiological relevance of another Rpn10/p54-interacting protein, the Smt3 SUMO (small ubiquitin-related modifier-1)-activating enzyme, detected by chemical cross-linking, has been confirmed by yeast two-hybrid analysis. Besides the Smt3 SUMO-activating enzyme, the Ubc9 SUMO-conjugating enzyme also exhibited in vivo interaction with the 5'-half of Rpn10/p54 in yeast cells. The mechanism of 26 S proteasome disassembly after ATP depletion is clearly different from that induced by Zn2+. Rpn10/p54 is permanently RP-bound during the ATP-dependent assembly-disassembly cycle, but during the Zn2+ cycle.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 42 条
[1]   RETRACTED: ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle (Retracted article. See vol. 173, pg. 804, 2018) [J].
Babbitt, SE ;
Kiss, A ;
Deffenbaugh, AE ;
Chang, YH ;
Bailly, E ;
Erdjument-Bromage, H ;
Tempst, P ;
Buranda, T ;
Sklar, LA ;
Baumler, J ;
Gogol, E ;
Skowyra, D .
CELL, 2005, 121 (04) :553-565
[2]   The base of the proteasome regulatory particle exhibits chaperone-like activity [J].
Braun, BC ;
Glickman, M ;
Kraft, R ;
Dahlmann, B ;
Kloetzel, PM ;
Finley, D ;
Schmidt, M .
NATURE CELL BIOLOGY, 1999, 1 (04) :221-226
[3]  
BUNNING P, 1983, BIOCHEMISTRY-US, V22, P103
[4]   The 90-kDa molecular chaperone family:: Structure, function, and clinical applications.: A comprehensive review [J].
Csermely, P ;
Schnaider, T ;
Soti, C ;
Prohászka, Z ;
Nardai, G .
PHARMACOLOGY & THERAPEUTICS, 1998, 79 (02) :129-168
[5]  
DEVERAUX Q, 1994, J BIOL CHEM, V269, P7059
[6]   Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome [J].
Elsasser, S ;
Chandler-Militello, D ;
Müller, B ;
Hanna, J ;
Finley, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :26817-26822
[7]   The regulatory particle of the Saccharomyces cerevisiae proteasome [J].
Glickman, MH ;
Rubin, DM ;
Fried, VA ;
Finley, D .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (06) :3149-3162
[8]   A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3 [J].
Glickman, MH ;
Rubin, DM ;
Coux, O ;
Wefes, I ;
Pfeifer, G ;
Cjeka, Z ;
Baumeister, W ;
Fried, VA ;
Finley, D .
CELL, 1998, 94 (05) :615-623
[9]   Inhibition of carboxypeptidase A by excess zinc: Analysis of the structural determinants by X-ray crystallography [J].
GomezOrtiz, M ;
GomisRuth, FX ;
Huber, R ;
Aviles, FX .
FEBS LETTERS, 1997, 400 (03) :336-340
[10]   Substrate access and processing by the 20S proteasome core particle [J].
Groll, M ;
Huber, R .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2003, 35 (05) :606-616