Two theoretical elasticity micromechanics models

被引:57
作者
Christensen, RM [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
关键词
micromechanics; composites; elasticity;
D O I
10.1023/A:1007497600857
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study is concerned with the Composite Spheres (Cylinders) Model and the Generalized Self Consistent Method (GSCM). A detailed examination of the two models proves the two models are the same in the limited cases where they both give solutions. In this process of comparison between the two models, a new solution is found for the shear property of a closed cell foam type idealization.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 9 条
[2]   INVARIANT PROPERTIES OF THE STRESS IN PLANE ELASTICITY AND EQUIVALENCE CLASSES OF COMPOSITES [J].
CHERKAEV, AV ;
LURIE, KA ;
MILTON, GW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 438 (1904) :519-529
[3]  
CHRISTENSEN RM, 1979, J MECH PHYS SOLIDS, V27, P315, DOI 10.1016/0022-5096(79)90032-2
[4]   A CRITICAL-EVALUATION FOR A CLASS OF MICROMECHANICS MODELS [J].
CHRISTENSEN, RM .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1990, 38 (03) :379-404
[5]   THE ELASTIC-MODULI OF A SHEET CONTAINING CIRCULAR HOLES [J].
DAY, AR ;
SNYDER, KA ;
GARBOCZI, EJ ;
THORPE, MF .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1992, 40 (05) :1031-1051
[6]  
Hashin Z., 1964, J. Appl. Mech, V31, P223, DOI [DOI 10.1115/1.3629590AMREAD0003-6900, 10.1115/1.3629590, DOI 10.1115/1.3629590]
[7]  
Hashin Z., 1962, J APPL MECH, V29, P143, DOI [10.1115/1.3636446, DOI 10.1115/1.3636446]
[8]  
HILL R, 1964, J MECH PHYS SOLIDS, V12, P199, DOI 10.1016/0022-5096(64)90019-5
[9]  
MILTON GW, 1997, COMMUNICATION