A new route to Explosive Percolation

被引:68
作者
Manna, S. S. [1 ,2 ]
Chatterjee, Arnab [3 ]
机构
[1] Satyendra Nath Bose Natl Ctr Basic Sci, Kolkata 700098, India
[2] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[3] Abdus Salam Int Ctr Theoret Phys, CMSP Sect, I-34014 Trieste, Italy
关键词
Explosive Percolation; Percolation phenomena; First order transition; MODEL;
D O I
10.1016/j.physa.2010.10.009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The biased link occupation rule in the Achlioptas process (AP) discourages the large clusters from growing much ahead of others and encourages faster growth of clusters which lag behind In this paper we propose a model where this tendency is sharply reflected in the Gamma distribution of the cluster sizes unlike the power law distribution in AP In this model single edges between pairs of clusters of sizes s(i) and s(j) are occupied with a probability proportional to (s(i)s(j))(alpha) The parameter alpha is continuously tunable over the entire real axis Numerical studies indicate that for alpha < alpha(c), the transition is first order alpha(c) = 0 for a square lattice and alpha(c) = -1/2 for random graphs In the limits of alpha = -infinity + infinity this model coincides with models well established in the literature (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:177 / 182
页数:6
相关论文
共 21 条
[1]   Explosive Percolation in Random Networks [J].
Achlioptas, Dimitris ;
D'Souza, Raissa M. ;
Spencer, Joel .
SCIENCE, 2009, 323 (5920) :1453-1555
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]  
CHALUPA J, 1979, J PHYS C SOLID STATE, V12, pL31, DOI 10.1088/0022-3719/12/1/008
[4]   Cluster aggregation model for discontinuous percolation transitions [J].
Cho, Y. S. ;
Kahng, B. ;
Kim, D. .
PHYSICAL REVIEW E, 2010, 81 (03)
[5]   Percolation Transitions in Scale-Free Networks under the Achlioptas Process [J].
Cho, Y. S. ;
Kim, J. S. ;
Park, J. ;
Kahng, B. ;
Kim, D. .
PHYSICAL REVIEW LETTERS, 2009, 103 (13)
[6]  
da Costa R. A., ARXIV10092534
[7]   CLASSICAL DIFFUSION ON EDEN TREES [J].
DHAR, D ;
RAMASWAMY, R .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1346-1349
[8]  
Erdos P., 1959, PUBL MATH-DEBRECEN, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12
[9]   Construction and Analysis of Random Networks with Explosive Percolation [J].
Friedman, Eric J. ;
Landsberg, Adam S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (25)
[10]  
Grimmett Geoffrey., 1999, PERCOLATION