Enhancement of OGG1 protein AP lyase activity by increase of APEX protein

被引:50
作者
Saitoh, T
Shinmura, K
Yamaguchi, S
Tani, M
Seki, S
Murakami, H
Nojima, Y
Yokota, J
机构
[1] Natl Canc Ctr, Res Inst, Div Biol, Chuo Ku, Tokyo 1040045, Japan
[2] Chugoku Jr Coll, Dept Human Nutr, Okayama 7010197, Japan
[3] Gunma Univ, Fac Med, Sch Hlth Sci, Gunma 3718511, Japan
[4] Gunma Univ, Sch Med, Dept Internal Med 3, Gunma 3718511, Japan
来源
MUTATION RESEARCH-DNA REPAIR | 2001年 / 486卷 / 01期
关键词
8-hydroxyguanine; DNA glycosylase; AP lyase; OGG1; APEX; hypochlorous acid;
D O I
10.1016/S0921-8777(01)00078-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
8-Hydroxyguanine (oh(8)G) is a major form of oxidative DNA damage produced by reactive oxygen species (ROS). The human OGG1 gene encodes a DNA glycosylase that excises oh(8)G from double-stranded DNA. In this study, we investigated a mode of interaction between OGG1 and APEX proteins in the repair of oh(8)G under oxidative stresses. DNA cleavage assay using oh(8)G-containing oligonucleotides showed that the phosphodiester bond on the 3'-side of oh(8)G was cleaved by the AP lyase activity of GST-OGG1 protein and the phosphodiester bond on the 5'-side of oh(8)G was cleaved by the DNA 3'-repair diesterase activity of APEX protein. Gel mobility shift assay showed that the complex of GST-OGG1 protein and oh(8)G-containing oligonucleotides mostly changed into the complex of APEX protein and oligonucleotides by addition of APEX protein into the reaction mixture, We next analyzed alterations in the amount of 8-hydroxydeoxyguanosine (oh(8)dG) in DNA and the levels of OGG1 and APEX expression in HeLa S3 cells treated with 2 mM hypochlorous acid, a kind of ROS. An approximately four-fold increase in the amount of oh(8)G was detected by the HPLC-ECD method. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analyses indicated that the level of APEX expression increased approximately four-fold, whereas the level of OGG1 expression was unchanged. However, in the DNA cleavage assay, the AP lyase activity of GST-OGG1 protein was significantly increased in the presence of a molar excess of APEX protein. These results indicate that, under severe oxidative stresses, OGG1 mRNA is not induced and the amount of OGG1 protein is not remarkably increased, but the activity of OGG1 protein is enhanced by the increase of APEX protein in the cells. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 32 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[3]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[4]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866
[5]   Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines [J].
Chen, KH ;
Yakes, FM ;
Srivastava, DK ;
Singhal, RK ;
Sobol, RW ;
Horton, JK ;
Van Houten, B ;
Wilson, SH .
NUCLEIC ACIDS RESEARCH, 1998, 26 (08) :2001-2007
[6]   ROLE OF OXYGEN FREE-RADICALS IN CARCINOGENESIS AND BRAIN ISCHEMIA [J].
FLOYD, RA .
FASEB JOURNAL, 1990, 4 (09) :2587-2597
[7]   INDUCIBILITY OF THE DNA-REPAIR GENE ENCODING O6-METHYLGUANINE-DNA METHYLTRANSFERASE IN MAMMALIAN-CELLS BY DNA-DAMAGING TREATMENTS [J].
FRITZ, G ;
TANO, K ;
MITRA, S ;
KAINA, B .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (09) :4660-4668
[8]  
Grösch S, 1998, CANCER RES, V58, P4410
[9]   The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation [J].
Hazra, IK ;
Izumi, T ;
Maidt, L ;
Floyd, RA ;
Mitra, S .
NUCLEIC ACIDS RESEARCH, 1998, 26 (22) :5116-5122
[10]   DNA oxidation matters: The HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine [J].
Helbock, HJ ;
Beckman, KB ;
Shigenaga, MK ;
Walter, PB ;
Woodall, AA ;
Yeo, HC ;
Ames, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (01) :288-293