Many techniques for the synthesis of ceramic thin films from aqueous solutions at low temperatures (25-100 degreesC) have been reported. This paper reviews non-electrochemical, non-hydrothermal, low-temperature aqueous deposition routes, with an emphasis on oxide materials for electronic applications. Originally used for sulfide and selenide thin films, such techniques have also been applied to oxides since the 1970's. Films of single oxides (e.g., transition metal oxides, In2O3, SiO2, SnO2) and multicomponent films (doped ZnO, Cd2SnO4, ZrTiO4, ZrO2-Y2O3, Li-Co-O spinel, ferrites, perovskites) have been produced. The maximum thicknesses of the films obtained have ranged from 100 to 1000 nm, and deposition rates have ranged from 2 to 20,000 nm/h. Compared to vapor-deposition techniques, liquid-deposition routes offer lower capital equipment costs, lower processing temperatures, and flexibility in the choice of substrates with respect to topography and thermal stability. Compared to sol-gel techniques, the routes reviewed here offer lower processing temperatures, lower shrinkage, and (being based on aqueous precursors) lower costs and the potential for reduced environmental impact. This review emphasizes the influence of solution chemistry and process design on the microstructures and growth rates of the films. The current understanding of the mechanisms of film formation is presented, and the advantages and limitations of these techniques are discussed.