Comparative Analysis of E2F Family Member Oncogenic Activity

被引:36
作者
Chen, Chunxia [1 ]
Wells, Andrew D. [1 ,2 ]
机构
[1] Childrens Hosp Philadelphia, Joseph Stokes Jr Res Inst, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
来源
PLOS ONE | 2007年 / 2卷 / 09期
关键词
D O I
10.1371/journal.pone.0000912
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The E2F family of transcription factors consists of nine members with both distinct and overlapping functions. These factors are situated downstream of growth factor signaling cascades, where they play a central role in cell growth and proliferation through their ability to regulate genes involved in cell cycle progression. For this reason, it is likely that the members of the E2F family play a critical role during oncogenesis. Consistent with this idea is the observation that some tumors exhibit deregulated expression of E2F proteins. In order to systematically compare the oncogenic capacity of these family members, we stably over-expressed E2F1 through 6 in non-transformed 3T3 fibroblasts and assessed the ability of these transgenic cell lines to grow under conditions of low serum, as well as to form colonies in soft agar. Our results show that these six E2F family members can be divided into three groups that exhibit differential oncogenic capacity. The first group consists of E2F2 and E2F3a, both of which have strong oncogenic capacity. The second group consists of E2F1 and E2F6, which were neutral in our assays when compared to control cells transduced with vector alone. The third group consists of E2F4 and E2F5, which generally act to repress E2F-responsive genes, and in our assays demonstrated a strong capacity to inhibit transformation. Our results imply that the pattern of expression of these six E2F family members in a cell could exert a strong influence over its susceptibility to oncogenic transformation.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics [J].
Aslanian, A ;
Iaquinta, PJ ;
Verona, R ;
Lees, JA .
GENES & DEVELOPMENT, 2004, 18 (12) :1413-1422
[2]   E2F-4, A NEW MEMBER OF THE E2F GENE FAMILY, HAS ONCOGENIC ACTIVITY AND ASSOCIATES WITH P107 IN-VIVO [J].
BEIJERSBERGEN, RL ;
KERKHOVEN, RM ;
ZHU, LA ;
CARLEE, L ;
VOORHOEVE, PM ;
BERNARDS, R .
GENES & DEVELOPMENT, 1994, 8 (22) :2680-2690
[3]  
BUCK V, 1995, ONCOGENE, V11, P31
[4]   Regulation of E2F through ubiquitin-proteasome-dependent degradation: Stabilization by the pRB tumor suppressor protein [J].
Campanero, MR ;
Flemington, EK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2221-2226
[5]   Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription [J].
Christensen, J ;
Cloos, P ;
Toftegaard, U ;
Klinkenberg, D ;
Bracken, AP ;
Trinh, E ;
Heeran, M ;
Di Stefano, L ;
Helin, K .
NUCLEIC ACIDS RESEARCH, 2005, 33 (17) :5458-5470
[6]   Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis [J].
Conner, EA ;
Lemmer, ER ;
Omori, M ;
Wirth, PJ ;
Factor, VM ;
Thorgeirsson, SS .
ONCOGENE, 2000, 19 (44) :5054-5062
[7]   Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation [J].
de Bruin, A ;
Maiti, B ;
Jakoi, L ;
Timmers, C ;
Buerki, R ;
Leone, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) :42041-42049
[8]   Distinct roles for E2F proteins in cell growth control and apoptosis [J].
DeGregori, J ;
Leone, G ;
Miron, A ;
Jakoi, L ;
Nevins, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7245-7250
[9]   The genetics of the E2F family of transcription factors: shared functions and unique roles [J].
DeGregori, J .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2002, 1602 (02) :131-150
[10]   Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland [J].
Denchi, EL ;
Attwooll, C ;
Pasini, D ;
Helin, K .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (07) :2660-2672