Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand

被引:108
作者
Gaumont-Guay, David [1 ]
Black, T. Andrew [1 ]
Barr, Alan G. [2 ]
Jassal, Rachhpal S. [1 ]
Nesic, Zoran [1 ]
机构
[1] Univ British Columbia, Biometerol & Soil Phys Grp, Vancouver, BC V6T 1Z4, Canada
[2] Meteorol Serv Canada, Climat Res Branch, Saskatoon, SK S7N 3H5, Canada
关键词
heterotrophic respiration; photosynthesis; Picea mariana; rhizospheric respiration; soil CO2 efflux;
D O I
10.1093/treephys/28.2.161
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
We conducted a root-exclusion experiment in a 125-year-old boreal black spruce (Picea mariana (Mill.) BSP) stand in 2004 to quantify the physical and biological controls on temporal dynamics of the rhizospheric (R-r) and heterotrophic (R-h) components of soil respiration (R-s). Annual R-r, R-h and estimated moss respiration were 285, 269 and 57 g C m(-2) year(-1), respectively, which accounted for 47, 44 and 9% of Rs (6119 C m(-2) year(-1)), respectively. A gradual transition from Rh-dominated (winter, spring and fall) to R-r-dominated (summer) respiration was observed during the year. Soil thawing in spring and the subsequent increase in soil water content (theta) induced a small and sustained increase in R-h but had no effect on R-r. During the remainder of the growing season, no effect of theta was observed on either component of R-s. Both components increased exponentially with soil temperature (T-s) during the growing season, but Rr showed greater temperature sensitivity than R-h (Q(10) of 4.0 and 3.0, respectively). Temperature-normalized variations in R-r were highly correlated with eddy covariance estimates of gross ecosystem photosynthesis, and the correlation was greatest when R-r was lagged by 24 days. Within diurnal cycles, variations in T-s were highly coupled to variations in R-h but were-significantly decoupled from R-r. The patterns observed at both time scales strongly suggest that the flow of photosynthates to the rhizosphere is a key driver of below-ground respiration processes but that photosynthate supply may control these processes in several ways.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 52 条
[1]  
ANDERSON D, 1998, BOREAS TE 01 SOILS D
[2]   Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE) [J].
Andrews, JA ;
Harrison, KG ;
Matamala, R ;
Schlesinger, WH .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1999, 63 (05) :1429-1435
[3]   Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:: extending observations beyond the first year [J].
BhupinderpalSingh ;
Nordgren, A ;
Löfvenius, MO ;
Högberg, MN ;
Mellander, PE ;
Högberg, P .
PLANT CELL AND ENVIRONMENT, 2003, 26 (08) :1287-1296
[4]  
BLACK TA, 2005, CARBON BALANCE FORES, P151
[5]   Roots exert a strong influence on the temperature sensitivity of soil respiration [J].
Boone, RD ;
Nadelhoffer, KJ ;
Canary, JD ;
Kaye, JP .
NATURE, 1998, 396 (6711) :570-572
[6]   CONTRIBUTIONS OF ABOVEGROUND LITTER, BELOWGROUND LITTER, AND ROOT RESPIRATION TO TOTAL SOIL RESPIRATION IN A TEMPERATURE MIXED HARDWOOD FOREST [J].
BOWDEN, RD ;
NADELHOFFER, KJ ;
BOONE, RD ;
MELILLO, JM ;
GARRISON, JB .
CANADIAN JOURNAL OF FOREST RESEARCH, 1993, 23 (07) :1402-1407
[7]   13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit [J].
Bowling, DR ;
McDowell, NG ;
Bond, BJ ;
Law, BE ;
Ehleringer, JR .
OECOLOGIA, 2002, 131 (01) :113-124
[8]  
Chen H, 2002, CAN J FOREST RES, V32, P320, DOI [10.1139/x01-202, 10.1139/X01-202]
[9]   On the variability of respiration in terrestrial ecosystems:: moving beyond Q10 [J].
Davidson, EA ;
Janssens, IA ;
Luo, YQ .
GLOBAL CHANGE BIOLOGY, 2006, 12 (02) :154-164
[10]   Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J].
Davidson, EA ;
Belk, E ;
Boone, RD .
GLOBAL CHANGE BIOLOGY, 1998, 4 (02) :217-227