On a class of support vector kernels based on frames in function Hilbert spaces

被引:18
作者
Gao, JB [1 ]
Harris, CJ [1 ]
Gunn, SR [1 ]
机构
[1] Univ Southampton, Dept Elect & Comp Sci, Image Speech & Intelligent Syst Res Grp, Southampton SO17 1BJ, Hants, England
关键词
D O I
10.1162/089976601750399263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There has been an increasing interest in kernel-based techniques, such as support vector techniques, regularization networks, and gaussian processes. There are inner relationships among those techniques, with the kernel function playing a central role. This article discusses a new class of kernel functions derived from the so-called frames in a function Hilbert space.
引用
收藏
页码:1975 / 1994
页数:20
相关论文
共 32 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[5]  
Benedetto J.J., 1994, Wavelets: Mathematics and Applications
[6]  
Bennett KP, 1999, ADVANCES IN KERNEL METHODS, P307
[7]  
BLATTER C, 1998, WAVELETS PRIMER
[8]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[9]  
Burges CJC, 1997, ADV NEUR IN, V9, P375
[10]  
Chui C. K., 1992, An introduction to wavelets, V1