Phase-modulus relations in cyclic wave functions

被引:18
作者
Englman, R [1 ]
Yahalom, A
Baer, M
机构
[1] Soreq NRC, Dept Appl Math & Phys, IL-81800 Yavne, Israel
[2] Tel Aviv Univ, Fac Engn, Ramat Aviv, Israel
关键词
D O I
10.1016/S0375-9601(98)00897-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive reciprocal integral relations between phases and amplitude moduli for a class of wave functions that are cyclically varying in time. The relations imply that changes of a certain kind (e.g. not arising from the dynamic phase) obligate changes in the other. Numerical results indicate the approximate validity of the relationships for arbitrarily (non-cyclically) varying states in the adiabatic (slowly changing) limit. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 20 条
[1]   Quantum measurement backreaction and induced topological phases [J].
Aharonov, Y ;
Kaufherr, T ;
Popescu, S ;
Reznik, B .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2023-2026
[2]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[3]  
BAER M, IN PRESS J CHEM PHYS
[5]   GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879) :405-411
[6]   MANIFESTATION OF BERRY TOPOLOGICAL PHASE IN NEUTRON SPIN ROTATION [J].
BITTER, T ;
DUBBERS, D .
PHYSICAL REVIEW LETTERS, 1987, 59 (03) :251-254
[7]  
CARSLAW HS, 1930, THEORY FOURIER SERIE
[8]   ANALYSIS OF BERRY PHASE BY THE EVOLUTION OPERATOR METHOD [J].
CHENG, CM ;
FUNG, PCW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (17) :3493-3501
[9]  
de Polavieja GG, 1998, PHYS REV LETT, V81, P1, DOI 10.1103/PhysRevLett.81.1
[10]  
Englman R., UNPUB