The HNO3 forming branch of the HO2 + NO reaction: pre-industrial-to-present trends in atmospheric species and radiative forcings

被引:37
作者
Sovde, O. A. [2 ]
Hoyle, C. R. [1 ,2 ]
Myhre, G.
Isaksen, I. S. A. [2 ]
机构
[1] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland
[2] Univ Oslo, Dept Geosci, Oslo, Norway
基金
瑞士国家科学基金会;
关键词
TROPOSPHERIC OZONE; CHEMISTRY; MODEL; HO2+NOREACTION; TEMPERATURE; EMISSIONS; NITROGEN; CHANNEL; PERIOD; O-3;
D O I
10.5194/acp-11-8929-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent laboratory measurements have shown the existence of a HNO3 forming branch of the HO2 + NO reaction. This reaction is the main source of tropospheric O-3, through the subsequent photolysis of NO2, as well as being a major source of OH. The branching of the reaction to HNO3 reduces the formation of these species significantly, affecting O-3 abundances, radiative forcing and the oxidation capacity of the troposphere. The Oslo CTM2, a three-dimensional chemistry transport model, is used to calculate atmospheric composition and trends with and without the new reaction branch. Results for the present day atmosphere, when both temperature and pressure effects on the branching ratio are accounted for, show an 11% reduction in the calculated tropospheric burden of O-3, with the main contribution from the tropics. An increase of the global, annual mean methane lifetime by 10.9 %, resulting from a 14.1% reduction in the global, annual mean OH concentration is also found. Comparisons with measurements show that including the new branch improves the modelled O-3 in the Oslo CTM2, but that it is not possible to conclude whether the NOy distribution improves. We model an approximately 11% reduction in the tropical tropospheric O-3 increase since pre-industrial times, and a 4% reduction of the increase in total tropospheric burden. Also, an 8% decrease in the trend of OH concentrations is calculated, when the new branch is accounted for. The radiative forcing due to changes in O-3 over the industrial era was calculated as 0.33Wm(-2), reducing to 0.26Wm(-2) with the new reaction branch. These results are significant, and it is important that this reaction branching is confirmed by other laboratory groups.
引用
收藏
页码:8929 / 8943
页数:15
相关论文
共 49 条
[1]  
Atkinson R.A., 2010, Evaluated kinetic and photochemical data for atmospheric chemistry - IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
[2]   A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle [J].
Berglen, TF ;
Berntsen, TK ;
Isaksen, ISA ;
Sundet, JK .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D19) :D193101-27
[3]   Effects of lightning and convection on changes in tropospheric ozone due to NOx emissions from aircraft [J].
Berntsen, TK ;
Isaksen, ISA .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1999, 51 (04) :766-788
[4]   Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing [J].
Berntsen, TK ;
Isaksen, ISA ;
Myhre, G ;
Fuglestvedt, JS ;
Stordal, F ;
Larsen, TA ;
Freckleton, RS ;
Shine, KP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D23) :28101-28126
[5]   A global three-dimensional chemical transport model for the troposphere .1. Model description and CO and ozone results [J].
Berntsen, TK ;
Isaksen, ISA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D17) :21239-21280
[6]   Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system [J].
Brenninkmeijer, C. A. M. ;
Crutzen, P. ;
Boumard, F. ;
Dauer, T. ;
Dix, B. ;
Ebinghaus, R. ;
Filippi, D. ;
Fischer, H. ;
Franke, H. ;
Friess, U. ;
Heintzenberg, J. ;
Helleis, F. ;
Hermann, M. ;
Kock, H. H. ;
Koeppel, C. ;
Lelieveld, J. ;
Leuenberger, M. ;
Martinsson, B. G. ;
Miemczyk, S. ;
Moret, H. P. ;
Nguyen, H. N. ;
Nyfeler, P. ;
Oram, D. ;
O'Sullivan, D. ;
Penkett, S. ;
Platt, U. ;
Pupek, M. ;
Ramonet, M. ;
Randa, B. ;
Reichelt, M. ;
Rhee, T. S. ;
Rohwer, J. ;
Rosenfeld, K. ;
Scharffe, D. ;
Schlager, H. ;
Schumann, U. ;
Slemr, F. ;
Sprung, D. ;
Stock, P. ;
Thaler, R. ;
Valentino, F. ;
van Velthoven, P. ;
Waibel, A. ;
Wandel, A. ;
Waschitschek, K. ;
Wiedensohler, A. ;
Xueref-Remy, I. ;
Zahn, A. ;
Zech, U. ;
Ziereis, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (18) :4953-4976
[7]   HNO3 forming channel of the HO2+NOreaction as a function of pressure and temperature in the ranges of 72-600 torr and 223-323 K [J].
Butkovskaya, Nadezhda ;
Kukui, Alexandre ;
Le Bras, Georges .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (37) :9047-9053
[8]   Water Vapor Effect on the HNO3 Yield in the HO2 + NO Reaction: Experimental and Theoretical Evidence [J].
Butkovskaya, Nadezhda ;
Rayez, Marie-Therese ;
Rayez, Jean-Claude ;
Kukui, Alexandre ;
Le Bras, Georges .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (42) :11327-11342
[9]   Formation of nitric acid in the gas-phase HO2+NOreaction:: Effects of temperature and water vapor [J].
Butkovskaya, NI ;
Kukui, A ;
Pouvesle, N ;
Le Bras, G .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (29) :6509-6520
[10]   Impact of the new HNO3-forming channel of the HO2+NO reaction on tropospheric HNO3, NOx, HOx and ozone [J].
Cariolle, D. ;
Evans, M. J. ;
Chipperfield, M. P. ;
Butkovskaya, N. ;
Kukui, A. ;
Le Bras, G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (14) :4061-4068