Passive control of liquid water storage and distribution in a PEFC through flow-field design

被引:90
作者
Turhan, A. [1 ]
Heller, K. [1 ]
Brenizer, J. S. [1 ]
Mench, M. M. [1 ]
机构
[1] Penn State Univ, Fuel Cell Dynam & Diagnost Lab, Radiat Sci & Engn Ctr, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
flooding; polymer electrolyte fuel cell; flow-field; neutron imaging; water storage; residual water;
D O I
10.1016/j.jpowsour.2008.02.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid water stored in the diffusion media (DM) in a polymer electrolyte fuel cell (PEFC) can dramatically impact steady and transient performance, degradation, and heat transfer. In this study, seven different flow-field designs, with landing-to-channel (L:C) ratio from 1:3 to 2: 1, were investigated at dry and fully humidified conditions, using neutron imaging. The results revealed the impact of flow-field geometry on stored liquid overhead is significant. In some cases, the stored water content in the cell can be nearly double that of another design, despite similar performances at low to medium current density. In general, a smaller L:C ratio reduces flooding losses and minimizes the stored water content. Additionally, the channel-DM interface plays a key role. For the same L:C ratio, a reduced number of channel-DM interfaces was shown to reduce flooding and stored liquid water content at steady state. This also suggests that using proper flow-held design can decrease the parasitic power consumption and the stored water content in the cell without any sacrifice from the cell performance. For dryer operating conditions, however, membrane dehydration becomes a dominant effect and a high landing-to-channel ratio flow-held is higher performing. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:773 / 783
页数:11
相关论文
共 61 条
[1]   Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells [J].
Antolini, E ;
Passos, RR ;
Ticianelli, EA .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (04) :383-388
[2]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[3]   Water management in PEM fuel cells [J].
Berg, P ;
Promislow, K ;
St Pierre, J ;
Stumper, J ;
Wetton, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) :A341-A353
[4]   Analysis of a two-phase non-isothermal model for a PEFC [J].
Birgersson, E ;
Noponen, M ;
Vynnycky, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A1021-A1034
[5]   A quantitative study of the effect of flow-distributor geometry in the cathode of a PEM fuel cell [J].
Birgersson, E ;
Vynnycky, M .
JOURNAL OF POWER SOURCES, 2006, 153 (01) :76-88
[6]   Convenient two-dimensional model for design of fuel channels for proton exchange membrane fuel cells [J].
Chen, FL ;
Wen, YZ ;
Chu, HS ;
Yan, WM ;
Soong, CY .
JOURNAL OF POWER SOURCES, 2004, 128 (02) :125-134
[7]   Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface [J].
Chen, KS ;
Hickner, MA ;
Noble, DR .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2005, 29 (12) :1113-1132
[8]   Water distribution measurement for a PEMFC through neutron radiography [J].
Chen, Yong-Song ;
Peng, Huei ;
Hussey, Daniel S. ;
Jacobson, David L. ;
tran, Doanh T. ;
Abdel-Baset, Tarek ;
Biernacki, Mark .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :376-386
[9]   Effects of water removal on the performance degradation of PEMFCs repetitively brought to <0°C [J].
Cho, EA ;
Ko, JJ ;
Ha, HY ;
Hong, SA ;
Lee, KY ;
Lim, TW ;
Oh, IH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :A661-A665
[10]   Sorption in proton-exchange membranes - An explanation of Schroeder's paradox [J].
Choi, PH ;
Datta, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :E601-E607