Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors

被引:101
作者
Liu, Juewen
Lu, Yi [1 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
D O I
10.1021/ja072075+
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA aptamers have been recently applied as simple and fast colorimetric sensors for a wide range of molecules. A unique feature of these systems is the presence of non-base pairing oligonucleotides in both DNA aptamers and spacers on DNA-functionalized nanoparticles. We report here a systematic investigation on an adenosine aptamer-linked gold nanoparticle system. When the aptamer overhang and the spacer were aligned on the same side, adenosine-responsive disassembly was inhibited. This inhibition effect increased with the length of the spacer, and fully inhibited activity was observed with the spacer containing more than three nucleotides. In contrast to a linear relationship between the spacer length and melting temperature in double-stranded DNA systems without overhangs, the aptamer system displayed a nonlinear relationship, with the melting temperature decreasing exponentially with spacer length. Control experiments suggested that this inhibition effect was due to thermodynamic factors rather than kinetic traps. A comparison with aptamer beacon systems indicated that nanoparticles may play an important role in this inhibition effect, and no specific interactions between the aptamer overhang and spacer were detected. The identity of nucleotides in the spacer did not affect the conclusions. Furthermore, the rate of disassembly or color change was slower at lower temperature or higher ionic strength, but was little affected by pH from 5.2 to 9.2. Therefore, non-base pairing DNA provided another dimension for controlling DNA-linked nanoparticles in addition to pH, temperature, or ionic strength, and this knowledge has resulted in the most optimal construct for sensing applications.
引用
收藏
页码:8634 / 8643
页数:10
相关论文
共 66 条
[1]   Organization of 'nanocrystal molecules' using DNA [J].
Alivisatos, AP ;
Johnsson, KP ;
Peng, XG ;
Wilson, TE ;
Loweth, CJ ;
Bruchez, MP ;
Schultz, PG .
NATURE, 1996, 382 (6592) :609-611
[2]   A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles [J].
Demers, LM ;
Mirkin, CA ;
Mucic, RC ;
Reynolds, RA ;
Letsinger, RL ;
Elghanian, R ;
Viswanadham, G .
ANALYTICAL CHEMISTRY, 2000, 72 (22) :5535-5541
[3]   DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays [J].
Deng, ZX ;
Tian, Y ;
Lee, SH ;
Ribbe, AE ;
Mao, CD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (23) :3582-3585
[4]   Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J].
Elghanian, R ;
Storhoff, JJ ;
Mucic, RC ;
Letsinger, RL ;
Mirkin, CA .
SCIENCE, 1997, 277 (5329) :1078-1081
[5]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[6]   Chemical biology - Aptamers in nanoland [J].
Famulok, M ;
Mayer, G .
NATURE, 2006, 439 (7077) :666-669
[7]   Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy [J].
Fang, XH ;
Cao, ZH ;
Beck, T ;
Tan, WH .
ANALYTICAL CHEMISTRY, 2001, 73 (23) :5752-5757
[8]   Rational design of DNA nanoarchitectures [J].
Feldkamp, U ;
Niemeyer, CM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (12) :1856-1876
[9]   Aptamer beacons for the direct detection of proteins [J].
Hamaguchi, N ;
Ellington, A ;
Stanton, M .
ANALYTICAL BIOCHEMISTRY, 2001, 294 (02) :126-131
[10]   Protein-dependent ribozymes report molecular interactions in real time [J].
Hartig, JS ;
Najafi-Shoushtari, SH ;
Grüne, I ;
Yan, A ;
Ellington, AD ;
Famulok, M .
NATURE BIOTECHNOLOGY, 2002, 20 (07) :717-722