Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks

被引:1413
作者
Canadell, Josep G.
Le Quéré, Corinne
Raupach, Michael R.
Field, Christopher B.
Buitenhuis, Erik T.
Ciais, Philippe
Conway, Thomas J.
Gillett, Nathan P.
Houghton, R. A.
Marland, Gregg
机构
[1] Global Carbon Project, Commonwealth Sci & Ind Res Org Marine, Atmospheric Res, Canberra, ACT 2601, Australia
[2] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[3] British Antarctic Survey, Cambridge CB3 0ET, England
[4] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
[5] Comis Energie Atom, Lab Sci Climate Environm, F-91191 Gif Sur Yvette, France
[6] Natl Oceanic & Atmosphric Administ Earth Syst Res, Boulder, CO 80305 USA
[7] Woods Hole Res Ctr, Falmouth, MA 02540 USA
[8] Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr, Oak Ridge, TN 37831 USA
[9] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
基金
英国自然环境研究理事会;
关键词
airborne fraction; anthropogenic carbon emissions; carbon-climate feedback; terrestrial and ocean carbon emissions; vulnerabilities of the carbon cycle;
D O I
10.1073/pnas.0702737104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000-2006, the emissions growth rate increased from 1.3% to 3.3% y-1. The third process is indicated by increasing evidence (P = 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ≈65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate-carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing. © 2007 by The National Academy of Sciences of the USA.
引用
收藏
页码:18866 / 18870
页数:5
相关论文
共 33 条
[1]   Drier summers cancel out the CO2 uptake enhancement induced by warmer springs [J].
Angert, A ;
Biraud, S ;
Bonfils, C ;
Henning, CC ;
Buermann, W ;
Pinzon, J ;
Tucker, CJ ;
Fung, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) :10823-10827
[2]  
Boden T, 1995, ESTIMATES GLOBAL REG
[3]   Regional vegetation die-off in response to global-change-type drought [J].
Breshears, DD ;
Cobb, NS ;
Rich, PM ;
Price, KP ;
Allen, CD ;
Balice, RG ;
Romme, WH ;
Kastens, JH ;
Floyd, ML ;
Belnap, J ;
Anderson, JJ ;
Myers, OB ;
Meyer, CW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (42) :15144-15148
[4]  
*BRIT PETR, 2007, STAT REV WORLD EN 20
[5]   The changing carbon cycle at Mauna Loa Observatory [J].
Buermann, Wolfgang ;
Lintner, Benjamin R. ;
Koven, Charles D. ;
Angert, Alon ;
Pinzon, Jorge E. ;
Tucker, Compton J. ;
Fung, Inez Y. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (11) :4249-4254
[6]  
Canadell J. G., 2007, TERRESTRIAL ECOSYSTE, P59, DOI [10.1007/978-3-540-32730-1_6, DOI 10.1007/978-3-540-32730-1_6, DOI 10.1007/978-3-540-32730-1]
[7]   Europe-wide reduction in primary productivity caused by the heat and drought in 2003 [J].
Ciais, P ;
Reichstein, M ;
Viovy, N ;
Granier, A ;
Ogée, J ;
Allard, V ;
Aubinet, M ;
Buchmann, N ;
Bernhofer, C ;
Carrara, A ;
Chevallier, F ;
De Noblet, N ;
Friend, AD ;
Friedlingstein, P ;
Grünwald, T ;
Heinesch, B ;
Keronen, P ;
Knohl, A ;
Krinner, G ;
Loustau, D ;
Manca, G ;
Matteucci, G ;
Miglietta, F ;
Ourcival, JM ;
Papale, D ;
Pilegaard, K ;
Rambal, S ;
Seufert, G ;
Soussana, JF ;
Sanz, MJ ;
Schulze, ED ;
Vesala, T ;
Valentini, R .
NATURE, 2005, 437 (7058) :529-533
[8]   Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity [J].
DeFries, RS ;
Field, CB ;
Fung, I ;
Collatz, GJ ;
Bounoua, L .
GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (03) :803-815
[9]  
Edmonds J, 2004, SCOPE SER, V62, P77
[10]   Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn [J].
Etheridge, DM ;
Steele, LP ;
Langenfelds, RL ;
Francey, RJ ;
Barnola, JM ;
Morgan, VI .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D2) :4115-4128