D-Phe complexes of zinc and cobalt carboxypeptidase A

被引:5
作者
Larsen, KS
Zhang, K
Auld, DS
机构
[1] HARVARD UNIV,SCH MED,CTR BIOCHEM & BIOPHYS SCI & MED,BOSTON,MA 02115
[2] HARVARD UNIV,SCH MED,DEPT PATHOL,BOSTON,MA 02115
[3] EUROPEAN MOL BIOL LAB,GRENOBLE OUTSTN,GRENOBLE 9,FRANCE
[4] UNIV PENN,UNIV CITY SCI CTR,INST BIOSTRUCT,PHILADELPHIA,PA
[5] UNIV PENN,DEPT BIOCHEM & BIOPHYS,PHILADELPHIA,PA 19104
关键词
D O I
10.1016/0162-0134(96)00037-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The binding of D-phenylalanine, D-Phe, to both zinc and cobalt carboxypeptidase A, ZnCPD and CoCPD, has been investigated by a combination of kinetic and spectroscopic techniques. Kinetic studies of the ZnCPD catalyzed hydrolysis of dansyl-Gly-Ala-L-Phe indicate that D-Phe inhibition occurs through a two-site sequential competitive inhibition mode with K-i values of 45 mu M and 11.6 mM at pH 8.4, 1 M NaCl, 25 degrees C. Spectral titration of CoCPD under the same conditions indicates a very strong binding mode of D-Phe (K-D < 100 mu M) that only slightly perturbs the visible cobalt electronic transitions. However, the conversion of CoCPD . D-Phe into a CoCPD . D-Phe(2) (K-D, 1.13 mM) is accompanied by a very strong spectral perturbation resulting in a complex that is characterized by lambda(max) values of 506 nm (epsilon = 27 M(-1)cm(-1)) and 605 nn (epsilon = 17 M(-1)cm(-1)) and a shoulder at 530 nm (epsilon = 23 M(-1)cm(-1)). The spectral properties of this tenary complex differ markedly from that of the CoCPD . L-Phe . N-3(-) ternary complex. X-ray absorption fine structure, XAFS, studies indicate that these differences are likely due to a more regular tetrahedral coordination sphere for the ternary azide complexes compared to an octahedral coordination geometry for the Zn and CoCPD D-Phe(2) complexes.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 23 条
[1]  
Auld D.S., 1987, HYDROLYTIC ENZYMES, P201
[2]   PH-DEPENDENT PROPERTIES OF COBALT(II) CARBOXYPEPTIDASE-A INHIBITOR COMPLEXES [J].
AULD, DS ;
BERTINI, I ;
DONAIRE, A ;
MESSORI, L ;
MORATAL, JM .
BIOCHEMISTRY, 1992, 31 (15) :3840-3846
[3]   METHODS FOR METAL SUBSTITUTION [J].
AULD, DS .
METHODS IN ENZYMOLOGY, 1988, 158 :71-79
[4]   SINGLE-STEP ISOLATION AND RESOLUTION OF PANCREATIC CARBOXYPEPTIDASE-A AND CARBOXYPEPTIDASE-B [J].
BAZZONE, TJ ;
SOKOLOVSKY, M ;
CUENI, LB ;
VALLEE, BL .
BIOCHEMISTRY, 1979, 18 (20) :4362-4366
[5]   AZIDE AND CHLORIDE BINDING TO CARBOXYPEPTIDASE-A IN THE PRESENCE OF L-PHENYLALANINE [J].
BERTINI, I ;
LUCHINAT, C ;
MONNANNI, R ;
MORATAL, JM ;
DONAIRE, A ;
AULD, DS .
JOURNAL OF INORGANIC BIOCHEMISTRY, 1990, 39 (01) :9-16
[6]   H-1-NMR SPECTROSCOPIC CHARACTERIZATION OF BINARY AND TERNARY COMPLEXES OF COBALT(II) CARBOXYPEPTIDASE-A WITH INHIBITORS [J].
BERTINI, I ;
LUCHINAT, C ;
MESSORI, L ;
MONNANNI, R ;
AULD, DS ;
RIORDAN, JF .
BIOCHEMISTRY, 1988, 27 (22) :8318-8325
[7]   INTERACTION OF ANIONS WITH THE ACTIVE-SITE OF CARBOXYPEPTIDASE-A [J].
BICKNELL, R ;
SCHAFFER, A ;
BERTINI, I ;
LUCHINAT, C ;
VALLEE, BL ;
AULD, DS .
BIOCHEMISTRY, 1988, 27 (03) :1050-1057
[8]  
CHRISTIANSON DW, 1989, J BIOL CHEM, V264, P12849
[9]   PROCEDURES FOR ISOLATION OF CRYSTALLINE BOVINEPANCREATIC CARBOXYPEPTIDASE A .2. ISOLATION OFCARBOXYPEPTIDASE A ALPHA FROM PROCARBOXYPEPTIDASE A [J].
COX, DJ ;
NEURATH, H ;
BOVARD, FC ;
WALSH, KA ;
BARGETZI, JP .
BIOCHEMISTRY, 1964, 3 (01) :44-&
[10]  
Crozier E.D., 1988, X-ray Absorption: Principles, applications, techniques of EXAFS, SEXAFS and XANES Eds, P373