Synaptic facilitation by reflected action potentials: Enhancement of transmission when nerve impulses reverse direction at axon branch points

被引:48
作者
Baccus, SA [1 ]
机构
[1] Univ Miami, Sch Med, Dept Physiol & Biophys, Neurosci Program, Miami, FL 33136 USA
关键词
D O I
10.1073/pnas.95.14.8345
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A rapid, reversible enhancement of synaptic transmission from a sensory neuron is reported and explained by impulses that reverse direction, or reflect, at axon branch points. In leech mechanosensory neurons, where one can detect reflection because it is possible simultaneously to study electrical activity in separate branches, action potentials reflected from branch points within the central nervous system under physiological conditions. Synapses adjacent to these branch points were activated twice in rapid succession, first by an impulse arriving from the periphery and then by its reflection, This fast double-firing facilitated synaptic transmission, increasing it to more than twice its normal level. Reflection occurred within a range of resting membrane potentials, and electrical activity produced by mechanical stimulation changed membrane potential so as to produce and cease reflection. A compartmental model was used to investigate how branch-point morphology and electrical activity contribute to produce reflection. The model shows that mechanisms that hyperpolarize the membrane so as to impair action potential propagation can increase the range of structures that can produce reflection, This suggests that reflection is more likely to occur in other structures where impulses fail, such as in axons and dendrites in the mammalian brain. In leech sensory neurons, reflection increased transmission from central synapses only in those axon branches that innervate the edges of the receptive field in the skin, thereby sharpening spatial contrast. Reflection thus allows a neuron to amplify synaptic transmission from a selected group of its branches in a way that can be regulated by electrical activity.
引用
收藏
页码:8345 / 8350
页数:6
相关论文
共 31 条
[1]   SYNCHRONIZED OSCILLATORY ACTIVITY IN LEECH NEURONS INDUCED BY CALCIUM-CHANNEL BLOCKERS [J].
ANGSTADT, JD ;
FRIESEN, WO .
JOURNAL OF NEUROPHYSIOLOGY, 1991, 66 (06) :1858-1873
[2]  
[Anonymous], 1979, The Neurosciences
[3]   Intermittent conduction in the spinal cord. [J].
Barron, DH ;
Matthews, BHC .
JOURNAL OF PHYSIOLOGY-LONDON, 1935, 85 (01) :73-103
[4]  
Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
[5]   MORPHOLOGY AND DISTRIBUTION OF TOUCH CELL TERMINALS IN THE SKIN OF THE LEECH [J].
BLACKSHAW, SE .
JOURNAL OF PHYSIOLOGY-LONDON, 1981, 320 (NOV) :219-+
[6]   Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells [J].
Chen, WR ;
Midtgaard, J ;
Shepherd, GM .
SCIENCE, 1997, 278 (5337) :463-467
[7]   MULTIPLE MEANING IN SINGLE VISUAL UNITS [J].
CHUNG, SH ;
RAYMOND, SA ;
LETTVIN, JY .
BRAIN BEHAVIOR AND EVOLUTION, 1970, 3 (1-4) :72-+
[8]   Action-potential propagation gated by an axonal I-A-like K+ conductance in hippocampus [J].
Debanne, D ;
Guerineau, NC ;
Gahwiler, BH ;
Thompson, SM .
NATURE, 1997, 389 (6648) :286-289
[9]   SPIKE PROPAGATION AND CONDUCTION FAILURE IN THE RAT NEURAL LOBE [J].
DYBALL, REJ ;
GROSSMANN, R ;
LENG, G ;
SHIBUKI, K .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 401 :241-256
[10]   Reflected waves in an inhomogeneous excitable medium [J].
Ermentrout, GB ;
Rinzel, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (04) :1107-1128