Proliferation dynamics of germinative zone cells in the intact and excitotoxically lesioned postnatal rat brain

被引:27
作者
Faiz, M [1 ]
Acarin, L [1 ]
Castellano, B [1 ]
Gonzalez, B [1 ]
机构
[1] Univ Autonoma Barcelona, Fac Med, Unit Histol, Bellaterra 08193, Spain
关键词
D O I
10.1186/1471-2202-6-26
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: The forebrain subventricular zone (SVZ)-olfactory bulb pathway and hippocampal subgranular zone (SGZ) generate neurons into adulthood in the mammalian brain. Neurogenesis increases after injury to the adult brain, but few studies examine the effect of injury on neural and glial precursors in the postnatal brain. To characterize the spatio-temporal dynamics of cell proliferation in the germinative zones, this study utilized a model of postnatal damage induced by NMDA injection in the right sensorimotor cortex at postnatal day 9. Dividing cell populations were labeled with 5-Bromodeoxyuridine ( BrdU) in the intact and damaged postnatal brain. Identity of proliferating cells was determined by double immunolabeling with nestin, GFAP, NeuN and tomato lectin (TL). Results: In the control brain, grouped BrdU+ cells were observed in the Rostral Migratory Stream (RMS), SVZ and SGZ. Maximal proliferation was seen at P12, persisted until P23 and diminished by P49. After injury, a striking reduction in the number of BrdU+ cells was observed in the ipsilateral SVZ from 10 hours (58% decrease) until 14 days post-lesion (88% decrease). In contrast, an increase in grouped BrdU+ cells was seen in the striatum adjacent to the depleted SVZ. Significantly reduced numbers of BrdU+ cells were also seen in the RMS until 3 days post-lesion. No changes were noted in the SGZ. Both in controls and lesioned hemispheres, BrdU+ cells located in the germinal zones were mostly nestin positive and negative for GFAP, NeuN, and TL. In the SVZ area lining the ventricle, BrdU+/ nestin+ cells were mainly located between TL+ ependyma and parenchymal GFAP+ astrocytes. After excitotoxicity, a decrease in the number and orientation of GFAP/nestin+ prolongations leaving the SVZ to the cortex, corpus callosum and striatum was noted until 5 days post-lesion. Conclusion: Postnatal excitotoxic injury differentially affects proliferating cells in the germinative zones: no change is observed in the dentate gyrus whereas excitotoxicity causes a significant decrease in proliferating cells in the SVZ and RMS. Depletion of BrdU+ cells in the postnatal SVZ and RMS differs from previous studies after adult brain injury and may affect the SVZ-RMS migration and is suggestive of progenitor recruitment to injured areas.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Primary cortical glial reaction versus secondary thalamic glial response in the excitotoxically injured young brain:: Microglial/macrophage response and major histocompatibility complex class I and II expression [J].
Acarin, L ;
González, B ;
Castro, AJ ;
Castellano, B .
NEUROSCIENCE, 1999, 89 (02) :549-565
[2]   Primary cortical glial reaction versus secondary thalamic glial response in the excitotoxically injured young brain:: Astroglial response and metallothionein expression [J].
Acarin, L ;
González, B ;
Hidalgo, J ;
Castro, AJ ;
Castellano, B .
NEUROSCIENCE, 1999, 92 (03) :827-839
[3]   Neurogenesis in adult subventricular zone [J].
Alvarez-Buylla, A ;
García-Verdugo, JM .
JOURNAL OF NEUROSCIENCE, 2002, 22 (03) :629-634
[4]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[5]   Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons [J].
Belachew, S ;
Chittajallu, R ;
Aguirre, AA ;
Yuan, XQ ;
Kirby, M ;
Anderson, S ;
Gallo, V .
JOURNAL OF CELL BIOLOGY, 2003, 161 (01) :169-186
[6]   Astrocytes re-express nestin in deafferented target territories of the adult rat hippocampus [J].
Brook, GA ;
Pérez-Bouza, A ;
Noth, J ;
Nacimiento, W .
NEUROREPORT, 1999, 10 (05) :1007-1011
[7]   Proliferation and phenotype regulation in the subventricular zone during experimental allergic encephalomyelitis:: In vivo evidence of a role for nerve growth factor [J].
Calzà, L ;
Giardino, L ;
Pozza, M ;
Bettelli, C ;
Micera, A ;
Aloe, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :3209-3214
[8]   Discussion point - Stem cells and neurogenesis in the adult brain [J].
Cameron, HA ;
McKay, R .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (05) :677-680
[9]  
CHUONG CM, 1984, J NEUROSCI, V4, P2354
[10]   Recovery recapitulates ontogeny [J].
Cramer, SC ;
Chopp, M .
TRENDS IN NEUROSCIENCES, 2000, 23 (06) :265-271