Dynamical density functional theory: binary phase-separating colloidal fluid in a cavity

被引:76
作者
Archer, AJ [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0953-8984/17/10/001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The. dynamical density functional theory of Marconi and Tarazona (1999 J. Chem. Phys. 110 8032), a theory for the non-equilibrium dynamics of the one-body density profile of a colloidal fluid, is applied to a binary fluid mixture of repulsive Gaussian particles confined in a spherical cavity of variable size. For this model fluid there exists an extremely,simple Helmholtz free energy functional that provides a remarkably accurate description of the equilibrium fluid properties. We therefore use this functional to test the assumptions implicit in the dynamical density functional theory, rather than any approximations involved in constructing the free energy functional.. We find very good agreement between the theory and Brownian dynamics simulations, focusing on cases where the confined fluid exhibits phase separation in the cavity. We also present an instructive derivation of the Smoluchowski equation (from which one is able to derive the dynamical density functional theory) starting from the Liouville equation - a fully microscopic treatment of the colloid and solvent particles. This 'coarse graining' is, of course, not exact and thus the derivation demonstrates the physical assumptions implicit in the Smoluchowski equation and therefore also in the dynamical density functional theory.
引用
收藏
页码:1405 / 1427
页数:23
相关论文
共 44 条