Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy

被引:484
作者
Zhang, DW [1 ]
Zhang, JZH [1 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
关键词
D O I
10.1063/1.1591727
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A scheme to calculate fully quantum mechanical (ab initio) interaction energy involving a macromolecule like protein is presented. In this scheme, the protein is decomposed into individual amino acid-based fragments that are treated with proper molecular caps. The interaction energy between any molecule and the given protein is given by the summation of interactions between the molecule and individually capped protein fragments. This scheme, termed molecular fractionation with conjugate caps (MFCC), makes it possible and practical to carry out full quantum mechanical (ab initio) calculation of intermolecular interaction energies involving proteins or other similar biological molecules. Numerical tests performed on the interaction energies between a water molecule and three small peptides demonstrate that the MFCC method can give excellent ab initio interaction energies compared to the exact treatment in which the whole peptides are included in the calculation. The current scheme scales linearly with the atomic size of the protein and can be directly applied to calculating real protein-molecule interaction energies by using fully quantum (ab initio) methods that are otherwise impossible. The success of the current method is expected to have a powerful impact in our prediction of protein interaction energies including, e.g., protein-drug interactions. (C) 2003 American Institute of Physics.
引用
收藏
页码:3599 / 3605
页数:7
相关论文
共 52 条
[1]   The generalized hybrid orbital method for combined quantum mechanical/molecular mechanical calculations: formulation and tests of the analytical derivatives [J].
Amara, P ;
Field, MJ ;
Alhambra, C ;
Gao, JL .
THEORETICAL CHEMISTRY ACCOUNTS, 2000, 104 (05) :336-343
[2]   Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods [J].
Antes, I ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (46) :9290-9295
[3]   Quantum chemical computations on parts of large molecules: The ab initio local self consistent field method [J].
Assfeld, X ;
Rivail, JL .
CHEMICAL PHYSICS LETTERS, 1996, 263 (1-2) :100-106
[4]   Hybrid models for combined quantum mechanical and molecular mechanical approaches [J].
Bakowies, D ;
Thiel, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10580-10594
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]  
Bersuker IB, 1997, INT J QUANTUM CHEM, V63, P1051
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   Catalytic mechanism of dihydrofolate reductase enzyme.: A combined quantum-mechanical/molecular-mechanical characterization of transition state structure for the hydride transfer step [J].
Castillo, R ;
Andrés, J ;
Moliner, V .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (51) :12140-12147
[9]   What is the best alternative to diagonalization of the Hamiltonian in large scale semiempirical calculations? [J].
Daniels, AD ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (03) :1321-1328
[10]   Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms [J].
Daniels, AD ;
Millam, JM ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (02) :425-431