Stability of repulsive Bose-Einstein condensates in a periodic potential

被引:144
作者
Bronski, JC
Carr, LD
Deconinck, B
Kutz, JN [1 ]
Promislow, K
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[4] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.63.036612
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cubic nonlinear Schrodinger equation with repulsive nonlinearity and an elliptic function potential models a quasi-one-dimensional repulsive dilute gas Bose-Einstein condensate trapped in a standing light wave. New families of stationary solutions are presented. Some of these solutions have neither an analog in the linear Schrodinger equation nor in the integrable nonlinear Schrodinger equation. Their stability is examined using analytical and numerical methods. All trivial-phase stable solutions are deformations of the ground state of the linear Schrodinger equation. Our results show that a large number of condensed atoms is sufficient to form a stable, periodic condensate. Physically, this implies stability of states near the Thomas-Fermi limit.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[2]   Direct, nondestructive observation of a bose condensate [J].
Andrews, MR ;
Mewes, MO ;
vanDruten, NJ ;
Durfee, DS ;
Kurn, DM ;
Ketterle, W .
SCIENCE, 1996, 273 (5271) :84-87
[3]   Nonlinear Schrodinger flow in a periodic potential [J].
Barra, F ;
Gaspard, P ;
Rica, S .
PHYSICAL REVIEW E, 2000, 61 (05) :5852-5863
[4]  
BAYM G, 1990, LECT QUANTUM MECH, pCH20
[5]  
BELOKOLOS ED, 1994, ALGEBROGEOMETRIC APP
[6]   Bose-Einstein condensates in spatially periodic potentials [J].
Berg-Sorensen, K ;
Molmer, K .
PHYSICAL REVIEW A, 1998, 58 (02) :1480-1484
[7]  
BONGS K, CONDMAT0007381
[8]   Quantum logic gates in optical lattices [J].
Brennen, GK ;
Caves, CM ;
Jessen, PS ;
Deutsch, IH .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1060-1063
[9]   Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond [J].
Carr, LD ;
Leung, MA ;
Reinhardt, WP .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :3983-4001
[10]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063610-063611