Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite -: Implications for cytotoxicity and alcohol-induced liver injury

被引:116
作者
Lee, JH [1 ]
Yang, ES [1 ]
Park, JW [1 ]
机构
[1] Kyungpook Natl Univ, Coll Nat Sci, Dept Biochem, Taegu 702701, South Korea
关键词
D O I
10.1074/jbc.M302332200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. We investigated whether the ICDH would be a vulnerable target of peroxynitrite anion (ONOO-) as a purified enzyme, in intact cells, and in liver mitochondria from ethanol-fed rats. Synthetic peroxynitrite and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a peroxynitrite-generating compound, inactivated ICDH in a dose- and time-dependent manner. The inactivation of ICDH by peroxynitrite or SIN-1 was reversed by dithiothreitol. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. Immunoblotting analysis of peroxynitrite-modified ICDH indicates that S-nitrosylation of cysteine and nitration of tyrosine residues are the predominant modifications. Using electrospray ionization mass spectrometry (ESI-MS) with tryptic digestion of protein, we found that peroxynitrite forms S-nitrosothiol adducts on Cys(305) and Cys(387) of ICDH. Nitration of Tyr(280) was also identified, however, this modification did not significantly affect the activity of ICDH. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by peroxynitrite. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and binding of the hydrophobic probe 8-anilino-1-napthalene sulfonic acid. When U937 cells were incubated with 100 muM SIN-1 bolus, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Using immunoprecipitation and ESI-MS, we were also able to isolate and positively identify S-nitrosylated and nitrated mitochondrial ICDH from SIN-1-treated U937 cells as well as liver from ethanol-fed rats. Inactivation of ICDH resulted in the pro-oxidant state of cells reflected by an increased level of intracellular reactive oxygen species, a decrease in the ratio of [NADPH]/[NADPH + NADP(+)], and a decrease in the efficiency of reduced glutathione turnover. The per-oxynitrite-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.
引用
收藏
页码:51360 / 51371
页数:12
相关论文
共 68 条
[1]  
Akerboom T P, 1981, Methods Enzymol, V77, P373
[2]  
ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548
[3]  
[Anonymous], [No title captured]
[4]   Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells [J].
Arai, M ;
Imai, H ;
Koumura, T ;
Yoshida, M ;
Emoto, K ;
Umeda, M ;
Chiba, N ;
Nakagawa, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (08) :4924-4933
[5]   Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system [J].
Araki, M ;
Nanri, H ;
Ejima, K ;
Murasato, Y ;
Fujiwara, T ;
Nakashima, Y ;
Ikeda, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :2271-2278
[6]   Ethanol consumption increases nitric oxide production in rats, and its peroxynitrite-mediated toxicity is attenuated by polyenylphosphatidylcholine [J].
Baraona, E ;
Zeballos, GA ;
Shoichet, L ;
Mak, KM ;
Lieber, CS .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2002, 26 (06) :883-889
[7]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[8]   ALS, SOD AND PEROXYNITRITE [J].
BECKMAN, JS ;
CARSON, M ;
SMITH, CD ;
KOPPENOL, WH .
NATURE, 1993, 364 (6438) :584-584
[9]  
BECKMAN JS, 1994, METHOD ENZYMOL, V233, P229
[10]   PATHOLOGICAL IMPLICATIONS OF NITRIC-OXIDE, SUPEROXIDE AND PEROXYNITRITE FORMATION [J].
BECKMAN, JS ;
CROW, JP .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1993, 21 (02) :330-334