Recursive estimation of motion parameters

被引:17
作者
Chaudhuri, S [1 ]
Sharma, S [1 ]
Chatterjee, S [1 ]
机构
[1] UNIV CALIF SAN DIEGO, DEPT ELECT ENGN, LA JOLLA, CA 92093 USA
关键词
D O I
10.1006/cviu.1996.0070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A robust algorithm that estimates the motion parameters recursively from a sequence of noisy images is presented here. We propose the use of the least median of squares method in conjunction with a computationally efficient recursive scheme. The method works well even when nearly half of the features have been matched very poorly. A recursive constrained least squares method is developed while dealing with a range or stereo data sequence and a recursive total least squares method is proposed for the monocular data sequence. (C) 1996 Academic Press, Inc.
引用
收藏
页码:434 / 442
页数:9
相关论文
共 31 条
[1]   LEAST-SQUARES FITTING OF 2 3-D POINT SETS [J].
ARUN, KS ;
HUANG, TS ;
BLOSTEIN, SD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :699-700
[2]  
BAKER H, 1988, P 22 AS C SIGN SYST
[3]   ESTIMATION OF OBJECT MOTION PARAMETERS FROM NOISY IMAGES [J].
BROIDA, TJ ;
CHELLAPPA, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (01) :90-99
[4]   PERFORMANCE BOUNDS FOR ESTIMATING 3-DIMENSIONAL MOTION PARAMETERS FROM A SEQUENCE OF NOISY IMAGES [J].
BROIDA, TJ ;
CHELLAPPA, R .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1989, 6 (06) :879-889
[5]  
CALLAERTS D, 1988, SVD SIGNAL PROCESSIN, P269
[6]   PERFORMANCE ANALYSIS OF TOTAL LEAST-SQUARES METHODS IN 3-DIMENSIONAL MOTION ESTIMATION [J].
CHAUDHURI, S ;
CHATTERJEE, S .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991, 7 (05) :707-714
[7]  
CHAUDHURI S, 1991, P INT S INT ROB JAN
[8]  
CUI N, 1994, CVGIP-IMAG UNDERSTAN, V59, P154, DOI 10.1006/ciun.1994.1010
[9]   EFFICIENT, NUMERICALLY STABILIZED RANK-ONE EIGENSTRUCTURE UPDATING [J].
DEGROAT, RD ;
ROBERTS, RA .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (02) :301-316
[10]   THE SMALLEST PERTURBATION OF A SUBMATRIX WHICH LOWERS THE RANK AND CONSTRAINED TOTAL LEAST-SQUARES PROBLEMS [J].
DEMMEL, JW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) :199-206