Cerebral blood flow alteration in neuroprotection following cerebral ischaemia

被引:41
作者
Sutherland, Brad A. [1 ]
Papadakis, Michalis [1 ]
Chen, Ruo-Li [1 ]
Buchan, Alastair M. [1 ]
机构
[1] Univ Oxford, Nuffield Dept Clin Med, Acute Stroke Programme, Oxford OX3 9DU, England
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2011年 / 589卷 / 17期
基金
英国医学研究理事会;
关键词
TISSUE-PLASMINOGEN ACTIVATOR; NITRIC-OXIDE SYNTHASE; L-ARGININE; RAT-BRAIN; FOCAL ISCHEMIA; INFARCT VOLUME; STROKE; PROTECTION; ARTERY; MICE;
D O I
10.1113/jphysiol.2011.209601
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The best neuroprotectant for acute ischaemic stroke would always be the rapid return of oxygen and glucose to physiological levels. This is currently provided by thrombolysis which restores blood flow to the ischaemic region. The attempt to confer neuroprotection by targeting the brain parenchyma has shown promise in experimental stroke models, but has unequivocally failed to translate to the clinic. Neuroprotective therapy primarily targets the biochemical cascade that produces cell death following cerebral ischaemia. However, these agents may also alter signal transduction that controls cerebral blood flow, for example glutamate, which may affect the outcome after ischaemia. In these cases, neuroprotection may potentially be due to the improved access to oxygen and glucose rather than biochemical prevention of cell death. Improvement in cerebral blood flow is an important but often overlooked effect of neuroprotective therapy, analogous to the protective effects of drug-induced hypothermia. This short review will discuss cerebral blood flow alteration and protection of the brain in the context of ischaemic preconditioning, oxygen sensing and thrombolysis. Future neuroprotection studies in cerebral ischaemia require stringent monitoring of cerebral blood flow, plus other physiological parameters. This will increase the chances that any protection observed may be able to translate to human therapy.
引用
收藏
页码:4105 / 4114
页数:10
相关论文
共 57 条
[1]   Reperfusion injury: Demonstration of brain damage produced by reperfusion after transient focal ischemia in rats [J].
Aronowski, J ;
Strong, R ;
Grotta, JC .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (10) :1048-1056
[2]   Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases [J].
Atochin, DN ;
Clark, J ;
Demchenko, IT ;
Moskowitz, MA ;
Huang, PL .
STROKE, 2003, 34 (05) :1299-1303
[3]   Glial and neuronal control of brain blood flow [J].
Attwell, David ;
Buchan, Alastair M. ;
Charpak, Serge ;
Lauritzen, Martin ;
MacVicar, Brian A. ;
Newman, Eric A. .
NATURE, 2010, 468 (7321) :232-243
[4]  
BUCHAN A, 1990, J NEUROSCI, V10, P311
[5]   THE EFFECT OF THE NMDA RECEPTOR ANTAGONIST MK-801 ON CEREBRAL BLOOD-FLOW AND INFARCT VOLUME IN EXPERIMENTAL FOCAL STROKE [J].
BUCHAN, AM ;
SLIVKA, A ;
XUE, D .
BRAIN RESEARCH, 1992, 574 (1-2) :171-177
[6]   Changes of neural activity correlate with the severity of cortical ischemia in patients with unilateral major cerebral artery occlusion [J].
Bundo, M ;
Inao, S ;
Nakamura, A ;
Kato, T ;
Ito, K ;
Tadokoro, M ;
Kabeya, R ;
Sugimoto, T ;
Kajita, Y ;
Yoshida, J .
STROKE, 2002, 33 (01) :61-66
[7]   Stress proteins and tolerance to focal cerebral ischemia [J].
Chen, J ;
Graham, SH ;
Zhu, RL ;
Simon, RP .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (04) :566-577
[8]   Postischemic attenuation of cerebral artery reactivity is increased in the presence of tissue plasminogen activator [J].
Cipolla, MJ ;
Lessov, N ;
Clark, WM .
STROKE, 2000, 31 (04) :940-945
[9]   Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use [J].
Dirnagl, Ulrich ;
Becker, Kyra ;
Meisel, Andreas .
LANCET NEUROLOGY, 2009, 8 (04) :398-412
[10]   Physiologic angiodynamics in the brain [J].
Dore-Duffy, Paula ;
La Manna, Joseph C. .
ANTIOXIDANTS & REDOX SIGNALING, 2007, 9 (09) :1363-1371