Soft-sediment habitats in intertidal and shallow subtidal marine ecosystems frequently support extensive populations of benthic microalgae (microphytobenthos). These algal assemblages are dominated by species of motile benthic diatoms and form biofilms, a matrix of cells, sediments and extracellular polymeric substances (EPS), that create a complex microhabitat and act to stabilise sediments. Diatom EPS consists of a relatively undefined complex mixture of proteins, proteoglycans and carbohydrates. This complexity causes problems in extracting and analysing EPS and in the intercomparison of studies. This chapter reviews our current knowledge on the production rates, patterns and composition of benthic diatom EPS in culture and field studies. Production patterns are dynamic, changing with cell growth phase, photosynthesis and irradiance, nutrient conditions, and are also linked to endogenous cell rhythms. Meta-analysis of published monosaccharide composition data identified at least four major types of EPS produced by benthic diatoms, with varying patterns of production and composition. It is clear that more detailed research on the structural and physical properties of EPS are needed to understand its role in the environment. The natural occurrence of EPS is closely linked to diatom biomass, a pattern consistent over both macro (km) and micro (μm) scales. EPS is lost from sediments by various routes, solubilisation and removal by overlying water, bacterial degradation and consumption by deposit-feeding invertebrates. Work is needed to quantify these pathways and clarify the importance of EPS in coastal carbon cycles. Diatom EPS is a widely cited mechanism for increasing sediment stability and stabilisation by biofilms is well described. However, data are not consistent and developments in our knowledge of the structure and function of EPS are needed to explain how EPS binds and interacts within the sediment- biofilm matrix and affects the theology of sediment. © 2003 Elsevier Ltd.