Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy

被引:536
作者
Lambeth, J. David [1 ]
机构
[1] Emory Univ, Dept Pathol & Lab Med, 148 Whitehead Biomed Res Bldg,615 Michael St, Atlanta, GA 30322 USA
关键词
D O I
10.1016/j.freeradbiomed.2007.03.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive oxygen species (ROS) are considered to be chemically reactive with and damaging to biomolecules including DNA, protein, and lipid, and excessive exposure to ROS induces oxidative stress and causes genetic mutations. However, the recently described family of Nox and Duox enzymes generates ROS in a variety of tissues as part of normal physiological functions, which include innate immunity, signal transduction, and biochemical reactions, e.g., to produce thyroid hormone. Nature's "choice" of ROS to carry out these biological functions seems odd indeed, given its predisposition to cause molecular damage. This review describes normal biological roles of Nox enzymes as well as pathological conditions that are associated with ROS production by Nox enzymes. By far the most common conditions associated with Nox-derived ROS are chronic diseases that tend to appear late in life, including atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, Alzheimer's disease, and others. In almost all cases, with the exception of a few rare inherited conditions (e.g., related to innate immunity, gravity perception, and hypothyroidism), diseases are associated with overproduction of ROS by Nox enzymes; this results in oxidative stress that damages tissues over time. I propose that these pathological roles of Nox enzymes can be understood in terms of antagonistic pleiotropy: genes that confer a reproductive advantage early in life can have harmful effects late in life. Such genes are retained during evolution despite their harmful effects, because the force of natural selection declines with advanced age. This review discusses some of the proposed physiologic roles of Nox enzymes, and emphasizes the role of Nox enzymes in disease and the likely beneficial effects of drugs that target Nox enzymes, particularly in chronic diseases associated with an aging population. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:332 / 347
页数:16
相关论文
共 203 条
[1]   The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides [J].
Abramov, AY ;
Duchen, MR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1464) :2309-2314
[2]   Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: Involvement of the renin-angiotensin system [J].
Akasaki, Takashi ;
Ohya, Yusuke ;
Kuroda, Junya ;
Eto, Kimika ;
Abe, Isao ;
Sumimoto, Hideki ;
Iida, Mitsuo .
HYPERTENSION RESEARCH, 2006, 29 (10) :813-820
[3]   Inflammation and Alzheimer's disease [J].
Akiyama, H ;
Barger, S ;
Barnum, S ;
Bradt, B ;
Bauer, J ;
Cole, GM ;
Cooper, NR ;
Eikelenboom, P ;
Emmerling, M ;
Fiebich, BL ;
Finch, CE ;
Frautschy, S ;
Griffin, WST ;
Hampel, H ;
Hull, M ;
Landreth, G ;
Lue, LF ;
Mrak, R ;
Mackenzie, IR ;
McGeer, PL ;
O'Banion, MK ;
Pachter, J ;
Pasinetti, G ;
Plata-Salaman, C ;
Rogers, J ;
Rydel, R ;
Shen, Y ;
Streit, W ;
Strohmeyer, R ;
Tooyoma, I ;
Van Muiswinkel, FL ;
Veerhuis, R ;
Walker, D ;
Webster, S ;
Wegrzyniak, B ;
Wenk, G ;
Wyss-Coray, T .
NEUROBIOLOGY OF AGING, 2000, 21 (03) :383-421
[4]   Reactive oxygen generated by Nox1 triggers the angiogenic switch [J].
Arbiser, JL ;
Petros, J ;
Klafter, R ;
Govindajaran, B ;
McLaughlin, ER ;
Brown, LF ;
Cohen, C ;
Moses, M ;
Kilroy, S ;
Arnold, RS ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :715-720
[5]   Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 [J].
Arnold, RS ;
Shi, J ;
Murad, E ;
Whalen, AM ;
Sun, CQ ;
Polavarapu, R ;
Parthasarathy, S ;
Petros, JA ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5550-5555
[6]   Effects of NADPH oxidase inhibitor in diabetic nephropathy [J].
Asaba, K ;
Tojo, A ;
Onozato, ML ;
Goto, A ;
Quinn, MT ;
Fujita, T ;
Wilcox, CS .
KIDNEY INTERNATIONAL, 2005, 67 (05) :1890-1898
[7]   Reactive Oxygen and Nitrogen Species in Alzheimer's Disease [J].
Aslan, Mutay ;
Ozben, Tomris .
CURRENT ALZHEIMER RESEARCH, 2004, 1 (02) :111-119
[8]   Mechanisms underlying H2O2-mediated inhibition of synaptic transmission in rat hippocampal slices [J].
Avshalumov, MV ;
Chen, BT ;
Rice, ME .
BRAIN RESEARCH, 2000, 882 (1-2) :86-94
[9]   The neutrophil NADPH oxidase [J].
Babior, BM ;
Lambeth, JD ;
Nauseef, W .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 397 (02) :342-344
[10]   Effect of pollen-mediated oxidative stress on immediate hypersensitivity reactions and late-phase inflammation in allergic conjunctivitis [J].
Bacsi, A ;
Dharajiya, N ;
Choudhury, BK ;
Sur, S ;
Boldogh, I .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2005, 116 (04) :836-843