Simulations on infinite-size lattices

被引:15
作者
Evertz, HG [1 ]
von der Linden, W [1 ]
机构
[1] Graz Tech Univ, Inst Theoret Phys, A-8010 Graz, Austria
关键词
D O I
10.1103/PhysRevLett.86.5164
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a Monte Carlo method. as a modification of existing cluster algorithms, which allows simulations directly on systems of infinite size, and for quantum models also at beta = infinity. All two-point functions can be obtained, including dynamical information. When the number of iterations is increased, correlation functions at larger distances become available. Limits q --> 0 and omega --> 0 can be approached directly. As examples we calculate spectra for the d = 2 using model and for Heisenberg quantum spin ladders with two and four legs.
引用
收藏
页码:5164 / 5167
页数:4
相关论文
共 19 条
[1]   Simulations of discrete quantum systems in continuous Euclidean time [J].
Beard, BB ;
Wiese, UJ .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :5130-5133
[2]   EXTRAPOLATING MONTE-CARLO SIMULATIONS TO INFINITE VOLUME - FINITE-SIZE-SCALING AT XI/L-MUCH-GREATER-THAN-1 [J].
CARACCIOLO, S ;
EDWARDS, RG ;
FERREIRA, SJ ;
PELISSETTO, A ;
SOKAL, AD .
PHYSICAL REVIEW LETTERS, 1995, 74 (15) :2969-2972
[3]   ASYMPTOTIC SCALING IN THE 2-DIMENSIONAL O(3) SIGMA MODEL AT CORRELATION LENGTH 10(5) [J].
CARACCIOLO, S ;
EDWARDS, RG ;
PELISSETTO, A ;
SOKAL, AD .
PHYSICAL REVIEW LETTERS, 1995, 75 (10) :1891-1894
[4]   Thermal operators and cluster topology in the q-state Potts model [J].
Caselle, M ;
Gliozzi, F ;
Necco, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03) :351-355
[5]   Thermal operators in Ising percolation [J].
Caselle, M ;
Gliozzi, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2333-2344
[6]  
DAGOTTO E, 1996, SCIENCE, V271, pG18
[7]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[8]   CLUSTER ALGORITHM FOR VERTEX MODELS [J].
EVERTZ, HG ;
LANA, G ;
MARCU, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (07) :875-879
[9]  
EVERTZ HG, CONDMAT9707221
[10]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+