Bargaining under uncertainty and the monotone path solutions

被引:13
作者
Bossert, W [1 ]
Nosal, E [1 ]
Sadanand, V [1 ]
机构
[1] UNIV GUELPH,DEPT ECON,GUELPH,ON N1G 2W1,CANADA
关键词
D O I
10.1006/game.1996.0047
中图分类号
F [经济];
学科分类号
02 ;
摘要
Uncertainty with respect to the feasible set of utility vectors is introduced in an axiomatic bargaining model. Given a criterion for nonprobabilistic decision-making under uncertainty, a natural efficiency requirement can be imposed on a bargaining solution. Using the maximin ordering, the strictly monotone path solutions (generalizations of the egalitarian solution) to the bargaining problem are characterized as the only continuous solutions that satisfy this efficiency axiom. If the maximin criterion is replaced by the maximax ranking or a strict convex combination of the maximin and the maximax criterion, imposing our efficiency axiom and continuity leads to the dictatorial solutions. (C) 1996 Academic Press, Inc.
引用
收藏
页码:173 / 189
页数:17
相关论文
共 16 条
[1]  
Arrow K.J., 1972, UNCERTAINTY EXPECTAT
[2]   GENERALIZED GINIS AND COOPERATIVE BARGAINING SOLUTIONS [J].
BLACKORBY, C ;
BOSSERT, W ;
DONALDSON, D .
ECONOMETRICA, 1994, 62 (05) :1161-1178
[3]  
CHUN Y, 1990, GAME ECON BEHAV, V2, P213
[4]   BARGAINING WITH UNCERTAIN DISAGREEMENT POINTS [J].
CHUN, YS ;
THOMSON, W .
ECONOMETRICA, 1990, 58 (04) :951-959
[5]   EGALITARIAN SOLUTIONS AND UNCERTAIN DISAGREEMENT POINTS [J].
CHUN, YS ;
THOMSON, W .
ECONOMICS LETTERS, 1990, 33 (01) :29-33
[6]   THE LEXICOGRAPHIC EQUAL-LOSS SOLUTION [J].
CHUN, YS ;
PETERS, H .
MATHEMATICAL SOCIAL SCIENCES, 1991, 22 (02) :151-161
[7]   PROPORTIONAL SOLUTIONS TO BARGAINING SITUATIONS - INTERPERSONAL UTILITY COMPARISONS [J].
KALAI, E .
ECONOMETRICA, 1977, 45 (07) :1623-1630
[8]   OTHER SOLUTIONS TO NASHS BARGAINING PROBLEM [J].
KALAI, E ;
SMORODINSKY, M .
ECONOMETRICA, 1975, 43 (03) :513-518
[9]   UTILITARIANISM, EGALITARIANISM, AND THE TIMING EFFECT IN SOCIAL CHOICE PROBLEMS [J].
MYERSON, RB .
ECONOMETRICA, 1981, 49 (04) :883-897
[10]   THE BARGAINING PROBLEM [J].
Nash, John F., Jr. .
ECONOMETRICA, 1950, 18 (02) :155-162