Cloning and characterization of two Arabidopsis genes that belong to the RAD21/REC8 family of chromosome cohesin proteins

被引:53
作者
Dong, F [1 ]
Cai, X [1 ]
Makaroff, CA [1 ]
机构
[1] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA
基金
美国国家科学基金会;
关键词
mitosis; meiosis; sister chromatid; chromosome cohesion;
D O I
10.1016/S0378-1119(01)00499-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Sister chromatid cohesion is required for proper chromosome segregation during cell division. One group of proteins that is essential for sister chromatid cohesion during mitosis and meiosis is the RAD21/REC8 family of cohesin proteins. Two cohesin proteins are found in yeast; one that functions mainly in mitosis while the other participates in meiosis. In contrast, only one cohesin gene appears to be present in Drosophila. In previous studies we identified an Arabidopsis cohesin protein that is required for meiosis. In this report we describe the isolation and characterization of two additional Arabidopsis cohesin genes. The structure of the genes suggests that they arose via a gene duplication event followed by extensive sequence evolution. Transcripts for the two genes are present throughout the plant and are highest in regions of active cell division, suggesting that the proteins may participate in chromosome cohesion during mitosis. (C) 2001 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 31 条
[1]   Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis [J].
Bai, XF ;
Peirson, BN ;
Dong, FG ;
Xue, C ;
Makaroff, CA .
PLANT CELL, 1999, 11 (03) :417-430
[2]   The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family [J].
Bhatt, AM ;
Lister, C ;
Page, T ;
Fransz, P ;
Findlay, K ;
Jones, GH ;
Dickinson, HG ;
Dean, C .
PLANT JOURNAL, 1999, 19 (04) :463-472
[3]   CLONING AND CHARACTERIZATION OF RAD21 AN ESSENTIAL GENE OF SCHIZOSACCHAROMYCES-POMBE INVOLVED IN DNA DOUBLE-STRAND-BREAK REPAIR [J].
BIRKENBIHL, RP ;
SUBRAMANI, S .
NUCLEIC ACIDS RESEARCH, 1992, 20 (24) :6605-6611
[4]   Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region [J].
Blat, Y ;
Kleckner, N .
CELL, 1999, 98 (02) :249-259
[5]   Characterization of the components of the putative mammalian sister chromatid cohesion complex [J].
Darwiche, N ;
Freeman, LA ;
Strunnikov, A .
GENE, 1999, 233 (1-2) :39-47
[6]   A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S-cerevisiae [J].
Guacci, V ;
Koshland, D ;
Strunnikov, A .
CELL, 1997, 91 (01) :47-57
[7]   The RHC21 gene of budding yeast, a homologue of the fission yeast rad21+ gene, is essential for chromosome segregation [J].
Heo, SJ ;
Tatebayashi, K ;
Kato, J ;
Ikeda, H .
MOLECULAR AND GENERAL GENETICS, 1998, 257 (02) :149-156
[8]   SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? [J].
Hirano, T .
GENES & DEVELOPMENT, 1999, 13 (01) :11-19
[9]   A central role for cohesions in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis [J].
Klein, F ;
Mahr, P ;
Galova, M ;
Buonomo, SBC ;
Michaelis, C ;
Nairz, K ;
Nasmyth, K .
CELL, 1999, 98 (01) :91-103
[10]   Identification of Xenopus SMC protein complexes required for sister chromatid cohesion [J].
Losada, A ;
Hirano, M ;
Hirano, T .
GENES & DEVELOPMENT, 1998, 12 (13) :1986-1997