Selective vulnerability to kainate-induced oxidative damage in different rat brain regions

被引:64
作者
Candelario-Jalil, E [1 ]
Al-Dalain, SM [1 ]
Castillo, R [1 ]
Martínez, G [1 ]
Fernández, OSL [1 ]
机构
[1] Univ Havana CIEB IFAL, Dept Pharmacol, Havana 10600, Cuba
关键词
excitotoxicity; kainic acid; oxidative damage; free radicals; brain; rat;
D O I
10.1002/jat.768
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Some markers of oxidative injury were measured in different rat brain areas (hippocampus, cerebral cortex, striatum, hypothalamus, amygdala/piriform cortex and cerebellum) after the systemic administration of an excitotoxic dose of kainic acid (KA, 9 mg kg(-1) i.p.) at two different sampling times (24 and 48 h). Kainic acid was able to lower markedly (P < 0.05) the glutathione (GSH) levels in hippocampus, cerebellum and amygdala/piriform cortex (maximal reduction at 24 h). In a similar way, lipid peroxidation, as assessed by malonaldehyde and 4-hydroxyalkenal levels, significantly increased (P < 0.05) in hippocampus, cerebellum and amygdala/piriform cortex mainly at 24 h after KA. In addition, hippocampal superoxide dismutase (SOD) activity decreased significantly (P < 0.05) with respect to basal levels by 24 h after KA application. On the other hand, brain areas such as hypothalamus, striatum and cerebral cortex seem to be less susceptible to KA excitotoxicity. According to these findings, the pattern of oxidative injury induced by systemically administered KA seems to be highly region-specific. Further, our results have shown that a lower antioxidant status (GSH and SOD) seems not to play an important role in the selective vulnerability of certain brain regions because it correlates poorly with increases in markers of oxidative damage. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:403 / 407
页数:5
相关论文
共 38 条
[1]   THE CYCLOOXYGENASE AND LIPOXYGENASE INHIBITOR BW755C PROTECTS RATS AGAINST KAINIC ACID-INDUCED SEIZURES AND NEUROTOXICITY [J].
BARAN, H ;
VASS, K ;
LASSMANN, H ;
HORNYKIEWICZ, O .
BRAIN RESEARCH, 1994, 646 (02) :201-206
[2]   INCREASED PROSTAGLANDIN FORMATION IN RAT-BRAIN FOLLOWING SYSTEMIC APPLICATION OF KAINIC ACID [J].
BARAN, H ;
HELDT, R ;
HERTTING, G .
BRAIN RESEARCH, 1987, 404 (1-2) :107-112
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   OXYGEN-FREE RADICALS IN RAT LIMBIC STRUCTURES AFTER KAINATE-INDUCED SEIZURES [J].
BRUCE, AJ ;
BAUDRY, M .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (06) :993-1002
[6]   Nimesulide limits kainate-induced oxidative damage in the rat hippocampus [J].
Candelario-Jalil, E ;
Ajamieh, HH ;
Sam, S ;
Martínez, G ;
Fernández, OSL .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2000, 390 (03) :295-298
[7]  
Carriedo SG, 1998, J NEUROSCI, V18, P7727
[8]   OXIDATIVE MECHANISMS INVOLVED IN KAINATE-INDUCED CYTOTOXICITY IN CORTICAL-NEURONS [J].
CHENG, Y ;
SUN, AY .
NEUROCHEMICAL RESEARCH, 1994, 19 (12) :1557-1564
[9]   Kainate receptors: subunits, synaptic localization and function [J].
Chittajallu, R ;
Braithwaite, SP ;
Clarke, VRJ ;
Henley, JM .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (01) :26-35
[10]   GLUTAMATE NEUROTOXICITY AND DISEASES OF THE NERVOUS-SYSTEM [J].
CHOI, DW .
NEURON, 1988, 1 (08) :623-634