The mechanism of glycerol conduction in aquaglyceroporins

被引:131
作者
Jensen, MO
Tajkhorshid, E
Schulten, K
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[2] Tech Univ Denmark, Dept Chem, DTU 207, DK-2800 Lyngby, Denmark
关键词
aquaporin; membrane protein; water channel; molecular dynamics; hydrogen bond;
D O I
10.1016/S0969-2126(01)00668-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The E. coli glycerol facilitator, GlpF, selectively conducts glycerol and water, excluding ions and charged solutes. The detailed mechanism of the glycerol conduction and its relationship to the characteristic secondary structure of aquaporins and to the NPA motifs in the center of the channel are unknown. Results: Molecular dynamics simulations of GlpF reveal spontaneous glycerol and water conduction driven on a nanosecond timescale, by thermal fluctuations. he bidirectional conduction, guided and facilitated by the secondary structure, is characterized by breakage and formation of hydrogen bonds for which water and glycerol compete. The conduction involves only very minor changes in the protein structure, and cooperativity between the GlpF monomers is not evident. The two conserved NPA motifs are strictly linked together by several stable hydrogen bonds and their asparagine side chains form hydrogen bonds with the substrates passing the channel in single file. Conclusions: A complete conduction of glycerol through the GlpF was deduced from molecular dynamics simulations, and key residues facilitating the conduction were identified. The nonhelical parts of the two half-membrane-spanning segments expose carbonyl groups towards the channel interior, establishing a curve-linear pathway. The conformational stability of the NPA motifs is important in the conduction and critical for selectivity. Water and glycerol compete in a random manner for hydrogen bonding sites in the protein, and their translocations in single file are correlated. The suggested conduction mechanism should apply to the whole family.
引用
收藏
页码:1083 / 1093
页数:11
相关论文
共 33 条
[1]   Molecular dynamics of the KcsA K+ channel in a bilayer membrane [J].
Bernèche, S ;
Roux, B .
BIOPHYSICAL JOURNAL, 2000, 78 (06) :2900-2917
[2]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[3]   Cellular and molecular biology of the aquaporin water channels [J].
Borgnia, M ;
Nielsen, S ;
Engel, A ;
Agre, P .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :425-458
[4]   Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli [J].
Borgnia, MJ ;
Agre, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2888-2893
[5]  
BRUNGER A, XPLOR VERSION 3 1 SY
[6]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[7]   A refined structure of human aquaporin-1 [J].
de Groot, BL ;
Engel, A ;
Grubmüller, H .
FEBS LETTERS, 2001, 504 (03) :206-211
[8]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[9]   Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? [J].
Dumas, F ;
Lebrun, MC ;
Tocanne, JF .
FEBS LETTERS, 1999, 458 (03) :271-277
[10]   Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway [J].
Dutzler, R ;
Wang, YF ;
Rizkallah, PJ ;
Rosenbusch, JP ;
Schirmer, T .
STRUCTURE, 1996, 4 (02) :127-134